• Title/Summary/Keyword: ON/OFF cell

Search Result 513, Processing Time 0.037 seconds

Reconstruction of Receptive Field of Retinal Ganglion Cell Using Matlab (Matlab을 이용한 망막신경절세포 감수야 구성)

  • Ye, Jang-Hee;Jin, Gye-Hwan;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.260-267
    • /
    • 2006
  • A retinal ganglion cell's receptive field is defined as that region on the retinal surface In which a light stimulus will produce a response. A retinal ganglion cell peers out at a small patch of the visual scene through its receptive field and encodes local features with action potentials that pass through the optic nerve to higher centers. Therefore, defining the receptive field of a retinal ganglion cell is essential to understand the electrical characteristics of a ganglion cell. Distribution of receptive fields over retinal surface provides us an Insight how the retinal ganglion cell processes the visual scene. In this paper, we provide the details how to reconstruct the receptive field of a retinal ganglion cell. We recorded the ganglion cell's action potential with multielectrode array when the random checkerboard stimulus was applied. After classifying the retinal waveform Into ON-cell, OFF-cell, ON/OFF-cell, we reconstructed the receptive field of retinal ganglion cell with Matlab. Here, we show the receptive fields of ON-cell and OFF-cell.

  • PDF

Numerical Evaluation of a Radially Variable Cell Density Strategy for Improving Light-off Performance: Focusing on Light-off Catalyst (자동차용 촉매변환기의 활성화 성능 향상을 위한 횡방향 가변 셀 밀도법의 수치적 평가: 활성화 촉매변환기를 중심으로)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.115-124
    • /
    • 2002
  • The optimum design of auto-catalyst needs a good compromise between the pressure drop and flow distribution in the monolith. One of the effective methods to achieve this goal is to use the concept of radially variable cell density. However, there has been no study of evaluating the usefulness of this method on light-off catalyst. We have computationally investigated the effectiveness of variable cell density technique applied to the light-off catalyst using a three-dimensional integrated CFD model. in which transient chemical reacting calculations are involved. Computed results show that variable cell density technique can reduce the accumulated emissions of CO and HC during the early 100sec of FTP cycle by 86.78 and 80.87%, respectively, The effect of air-gap between the monoliths has been also examined. It is found that air-gap has a beneficial effect on reducing pressure drop and cold-start emissions.

Queueing Analysis for an ATM Multiplexer Loader by CBR and ON/OFF Traffic Sources (CBR과 ON/OFF 트레픽원이 혼합된 ATM 다중화기에 대한 큐잉 분석)

  • 김승환;박진수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.6
    • /
    • pp.9-17
    • /
    • 1994
  • ATM (Asynchronous Transfer Mode) has a fixed-length packet transport scheme. It is one of the promising proposals in B-ISDN.Since the packet length is fixed, it can be potentially to perform the various service to users. In this paper, a queueing model for an ATM multip`exer loaded by CBR and ON/OFF input sources is considered, and the two-queue system which each type of input sources has a queue with a finite capacity is analyzed. The cell loss probabilities for a performance measures of ATM multiplexer are derived, and are also evaluated through numerical examples. As a result, the cell loss probability of ON/OFF sources for the queue size is rapidly decreased when the multiplexed number and burstiness are increased. Since cells of the CBR source have lower priority than cells of the ON/OFF source, cell loss probabilities of CBR sources are accordingly high independently of CBR cell arrival rate when the number of CBR sources is large.

  • PDF

Stability Tests on Anion Exchange Membrane Water Electrolyzer under On-Off Cycling with Continuous Solution Feeding

  • Niaz, Atif Khan;Lim, Hyung-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.369-376
    • /
    • 2022
  • In this study, the stability of an anion exchange membrane water electrolyzer (AEMWE) cell was evaluated in an on-off cycling operation with respect to an applied electric bias, i.e., a current density of 500 mA cm-2, and an open circuit. The ohmic and polarization resistances of the system were monitored during operation (~800 h) using electrochemical impedance spectra. Specific consideration was given to the ohmic resistance of the cell, especially that of the membrane under on-off cycling conditions, by consistently feeding the cell with KOH solution. Owing to an excess feed solution, a momentary increase in the polarization resistance was observed immediately after the open-circuit. The excess feed solution was mostly recovered by subjecting the cell to the applied electric bias. Stability tests on the AEMWE cell under on-off cycling with continuous feeding even under an open circuit can guarantee long-term stability by avoiding an irreversible increase in ohmic and polarization resistances.

Estimation of Visual Stimulus Intensity From Retinal Ganglion Cell Spike Trains Using Optimal Linear Filter (최적선형필터를 이용한 망막신경절세포 Spike Train으로부터의 시각자극 세기 변화 추정)

  • Ryu, Sang-Baek;Kim, Doo-Hee;Ye, Jang-Hee;Kim, Kyung-Hwan;Goo, Yong-Sook
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.212-217
    • /
    • 2007
  • As a preliminary study for the development of electrical stimulation strategy of artificial retina, we set up a method fur the reconstruction of input intensity variation from retinal ganglion cell(RGC) responses. In order to estimate light intensity variation, we used an optimal linear filter trained from given stimulus intensity variation and multiple single unit spike trains from RGCs. By applying ON/OFF stimulation(ON duration: 2 sec, OFF duration: 5 sec) repetitively, we identified three functional types of ganglion cells according to when they respond to the ON/OFF stimulus actively: ON cell, OFF cell, and ON-OFF cell. Experiments were also performed using a Gaussian random stimulus and a binary random stimulus. The input intensity was updated once every 90 msec(i. e. 11 Hz) to present the stimulus. The result of reconstructing 11 Hz Gaussian and binary random stimulus was not satisfactory and showed low correlation between the original and reconstructed stimulus. In the case of ON/OFF stimulus in which temporal variation is slow, successful reconstruction was achieved and the correlation coefficient was as high as 0.8.

Characterization of Rabbit Retinal Ganglion Cells with Multichannel Recording (다채널기록법을 이용한 토끼 망막 신경절세포의 특성 분석)

  • Cho Hyun Sook;Jin Gye-Hwan;Goo Yong Sook
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.228-236
    • /
    • 2004
  • Retinal ganglion cells transmit visual scene as an action potential to visual cortex through optic nerve. Conventional recording method using single intra- or extra-cellular electrode enables us to understand the response of specific neuron on specific time. Therefore, it is not possible to determine how the nerve impulses in the population of retinal ganglion cells collectively encode the visual stimulus with conventional recording. This requires recording the simultaneous electrical signals of many neurons. Recent advances in multi-electrode recording have brought us closer to understanding how visual information is encoded by population of retinal ganglion cells. We examined how ganglion cells act together to encode a visual scene with multi-electrode array (MEA). With light stimulation (on duration: 2 sec, off duration: 5 sec) generated on a color monitor driven by custom-made software, we isolated three functional types of ganglion cell activities; ON (35.0$\pm$4.4%), OFF (31.4$\pm$1.9%), and ON/OFF cells (34.6$\pm$5.3%) (Total number of retinal pieces = 8). We observed that nearby neurons often fire action potential near synchrony (< 1 ms). And this narrow correlation is seen among cells within a cluster which is made of 6~8 cells. As there are many more synchronized firing patterns than ganglion cells, such a distributed code might allow the retina to compress a large number of distinct visual messages into a small number of ganglion cells.

  • PDF

Study on the Characteristics of GaInP/AlGaInP Heterojunction Photovoltaic Cells under Concentrated Illumination (집광 조건에서의 GaInP/AlGaInP 이종접합 구조 태양전지 특성 연구)

  • Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.504-508
    • /
    • 2019
  • The feasibility of replacing the tope cell of pn GaInP homojunction with our GaInP/AlGaInP heterojunction structure in III-V semiconductor multijunction photovoltaic (MJPV) cells having the highest current conversion efficiency was investigated. The performance of photovoltaic (PV) cells grown on $2^{\circ}$ and $10^{\circ}$ off-oriented GaAs substrates were compared to each other. The PV cells on the $10^{\circ}$ off-cut substrate showed higher short-circuit current density ($J_{sc}$) and conversion efficiency values than that of using the $2^{\circ}$ one. For $2{\times}2mm^2$ area PV cell on $10^{\circ}$ off substrate, the $J_{sc}$ of $9.21mA/cm^2$ and the open-circuit voltage of 1.38 V were measured under 1 sun illumination. For $5{\times}5mm^2$ cell on $10^{\circ}$ off substrate, the conversion efficiency was decreased from 6.03% (1 sun) to 5.28% (20 sun) due to a decrease in fiill factor (FF).

Traffic Modeling and Call Admission Control GCRA-Controlled VBR Traffic in ATM Network (ATM 망에서 UPC 파라미터로 제어된 VBR 트래픽 모델링 및 호 수락 제어)

  • 정승욱;정수환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7C
    • /
    • pp.670-676
    • /
    • 2002
  • The object of ATM network is to the guarantee quality of service(QoS). Therefore, various of traffic management schemes have been proposed. Among these schemes, call admission control(CAC) is very important to provide real-time services and ON-OFF model, which is single source traffic model, has been used. But ON-OFF model differ from GCRA(Generic Cell Rate Algorithm) controlled traffic in ATM network. In this paper, we analyze the traffic, which is controlled as dual GCRA, and propose TWM(Three-state Worst-case Model), which is new single source traffic model. We also proposed CAC to guarantee peak-to-peak CDV(Cell Delay Variation) based on the TWM. In experiments, ON-OFF model and TWM are compared to show that TWM is superior to ON-Off model in terms of QoS guaranteeing.

Distributed BS Transmit Power Control for Utility Maximization in Small-Cell Networks (소형 셀 환경에서 유틸리티 최대화를 위한 분산화된 방법의 기지국 전송 전력 제어)

  • Lee, Changsik;Kim, Jihwan;Kwak, Jeongho;Kim, Eunkyung;Chong, Song
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1125-1134
    • /
    • 2013
  • Small cells such as pico or femto cells are promising as a solution to cope with higher traffic explosion and the large number of users. However, the users within small cells are likely to suffer severe inter-cell interference (ICI) from neighboring base stations (BSs). To tackle this, several papers suggest BS transmit power on/off control algorithms which increase edge user throughput. However, these algorithms require centralized coordinator and have high computational complexity. This paper makes a contribution towards presenting fully distributed and low complex joint BS on/off control and user scheduling algorithm (FDA) by selecting on/off pattern of BSs. Throughput the extensive simulations, we verify the performance of our algorithm as follows: (i) Our FDA provides better throughput performance of cell edge users by 170% than the algorithm without the ICI management. (ii) Our FDA catches up with the performance of optimal algorithm by 88-96% in geometric average throughput and sufficiently small gap in edge user throughput.