• Title/Summary/Keyword: OMS/MP

Search Result 22, Processing Time 0.019 seconds

Sensitivity Analysis for Reliability Prediction Standard: Focusing on MIL-HDBK-217F, RiAC-HDBK-217Plus, FIDES (신뢰도 예측 규격의 민감도 분석: MIL-HDBK-217F, RiAC-HDBK-217Plus, FIDES를 중심으로)

  • Oh, JaeYun;Park, SangChul;Jang, JoongSoon
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.92-102
    • /
    • 2017
  • Purpose: Reliability prediction standards consider environmental conditions, such as temperature, humidity and vibration in order to predict the reliability of the electronics components. There are many types of standards, and each standard has a different failure rate prediction model, and requires different environmental conditions. The purpose of this study is to make a sensitivity analysis by changing the temperature which is one of the environmental conditions. By observing the relation between the temperature and the failure rate, we perform the sensitivity analysis for standards including MIL-HDBK-217F, RiAC-HDBK-217Plus and FIDES. Methods: we establish environmental conditions in accordance with maneuver weapon systems's OMS/MP and mission scenarios then predict the reliability using MIL-HDBK-217F, RiAC-HDBK-217Plus and FIDES through the case of DC-DC Converter. Conclusion: Reliability prediction standards show different sensitivities of their failure rates with respect to the changing temperatures.

Relative Reactivity of Various Al-substituted-dialkylalans in Reduction of Carbonyl Compounds: A Theoretical Study on Substituent Effect

  • Nahm, Keepyung;Cha, Jin Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2335-2339
    • /
    • 2013
  • Relative reactivity of various Al-substituted dialkylalans ($AlR_2(X)$) in reduction of acetone has been studied with density functional theory and MP2 method. Formation of the alan dimers and the alan-acetone adduct, and the transition state for the Meerwein-Ponndorf-Verley (MPV) type reduction of the adduct were calculated to figure out the energy profile. Formation of dimeric alans is highly exothermic. Both the relative free energies for acetone-alan adduct formation and the TS barriers for the MPV type reduction with respect to alan dimers and acetone were calculated and they show the same trend. Based on these energetic data, relative reactivity of alans is expected to be; $AlR_2(Cl)$ > $AlR_2(OTf)$ > $AlR_2(O_2CCF_3)$ > $AlR_2(F)$ > $AlR_2(OMs)$ > $AlR_2(OAc)$ > $AlR_2(OMe)$ > $AlR_2(NMe_2)$. The energy profile is relatively well correlated with the experimental order of the reactivity of Al-substituted dialkylalans. It is noted that the substituents of alans have initial effects on the relative free energies for the carbonyl-adduct formation. Therefore, an $AlR_2(X)$ which forms a more stable carbonyl-adduct is more reactive in carbonyl reduction.