• 제목/요약/키워드: OLED polymer

검색결과 102건 처리시간 0.031초

Phenyl-Naphthyl Amine Effect of New Phenothiazine Derivatives with High Tg for Hole Injection and Hole Transporting Materials

  • Kim, Soo-Kang;Lee, Ji-Hoon;Park, Jong-Wook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.450-453
    • /
    • 2008
  • We synthesized a new HIL and HTL materials by using phenothiazinly moiety, 1,4-diphenothiazyl-benzene [DPtzB], 3',7',3",7"-tetrakis(N-phenyl-2-naphthylamine)-1,4-diphenothiazyl-benzene[PNA-DPtzB]. Synthesized materials exhibited high Tg in the range of $175\;-\;202^{\circ}C$. These values are much better than commonly used hole transporting materials (2-TNATA and NPB). The OLED device that used DPtzB as a HIL showed the highest efficiency of 4.31cd/A at $10mA/cm^2$.

  • PDF

RF 플라즈마를 이용한 유기 EL소자의 발광 효율에 관한 연구 (A Study on the Enhancement of Emission Efficiency of an Organic EL Devices Using the RF Plasma)

  • 박상무;김형권;신백균;임경범;이덕출
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권9호
    • /
    • pp.400-406
    • /
    • 2003
  • Efficient electrodes are devised for organic luminescent device(OLED). ITO electrode is treated with $O_2$ plasma. In order to inject hole efficiently, there is proposed the shape of anode that inserted plasma polymerized films as buffer layer between anode and organic layer using thiophene monomer. In the case of device inserted the buffer layer by using the plasma polymerization after $O_2$ plasma processing for ITO transparent electrode, since it forms the stable interface and reduce the moving speed of hole, the recombination of hole and electronic are made in the emitting layer. Therefore it realized the device capability of two times in the aspect of luminous efficiency than the device which do not be inserted the buffer layer. Experiments are limited to the device that has the structure of TPD/$AIq_3$, however, the aforementioned electrodes can similarly applied to the organic luminous device and the Polymer luminous device.

Enforced Effects of Bulky Side Groups and Side Group Substitution Position on OLED High Performance: How to Control Side Groups for Highly Efficient Blue Emitters?

  • Park, Young-Il;Kim, Soo-Kang;Jaung, Jae-Yun;Park, Jong-Wook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.493-496
    • /
    • 2009
  • We report the EL property of blue and blue-violet emitting materials with anthracene moiety as well as a new core structure containing indenopyrazine. Non-doped device using one of indenopyrazine core derivatives was found to exhibit excellent blue-violet color purity of (0.173, 0.063), and narrow emission band of 42nm FWHM. One of anthracene core derivatives with bulky side group also exhibits excellent color coordinates (0.156, 0.088) and an external quantum efficiency of 7.18%.

  • PDF

Synthesis and Characterization of Polyimide Films for Flexible Display Substrates

  • Vu, Quang Hung;Kim, Jin-Woo;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.633-636
    • /
    • 2008
  • A series novel films of polyimide (PI) and co-polyimide (Co-PI) containing fluorine with colorless, flexible properties was prepared by a two-step process from various commercial aromatic monomers such as 4,4'-(Hexafluoro iso propylidene) diphthalic anhydride (6FDA), 2,2'-Bis(Trifluoromethyl) benzidine (TFDB), 2,2-bis(3-amino-4-hydroxyphenyl) hexafluoropropane (AH6FP) and Bis(4-(3-aminophenoxy)phenyl)sulfone (BAS). Furthermore, these obtained transparent and flexible Co-PI films exhibited excellent thermal stability with the decomposition temperature (at 5% weight loss) around of $500^{\circ}C$ and the glass transition temperature ($T_g$) in the range of $275-350^{\circ}C$.

  • PDF

Exciton dissociation yields of semiconducting polymer thin film devices doped by various phosphorescent emitters

  • An, J.D.;Chang, J.Y.;Han, J.W.;Im, C.;Chin, B.D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1010-1013
    • /
    • 2006
  • To understand the exact charge carrier photogeneration properties of photoactive thin films consisting of a ${\pi}-conjugated$ polymer matrix and a triplet dopant, we prepared two types of polymer, poly(9-vinylcarbazole) (PVK) and poly[9,9-bis(2- ethylhexyl)fluorene-2,7-diyl] (PF2/6) doped with triplet emitters for organic light-emitting diodes (OLED), either iridium(III)fac-tris(2-phenylpyridine) $(Ir(ppy)_3)$ or iridium(III)bis[(4,6-fluorophenyl)- $pyridinato-N,C^2'$]picolinate (FIrpic), as thin film devices by using the conventional method. Those doped film devices, as well as pristine film devices, on ITO substrates were characterized by means of steady state photocurrent measurement for a wide spectral range.

  • PDF

A Novel Polymer Host for Highly Efficient Solution-Processed Blue Organic Light-Emitting Diode

  • Jou, Jwo-Huei;Lin, Cheng-Wei;Lai, I-Ming;Wang, Wei-Ben;Chiu, Chuan-Huan;Grigalevicius, Saulius;Wu, Chung-Chih
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.803-805
    • /
    • 2009
  • A highly efficient blue organic light-emitting diode (OLED) was fabricated by using a novel polymer host, poly[3-(carbazol-9-ylmethyl)-3-methyloxetane]. The resultant solution-processed device showed a markedly high efficiency of 29.7 lm/W at 100 cd/$m^2$ by doping 24 wt% blue dye bis(3,5-difluoro-2-(2-pyridyl)-phenyl-(2-carboxy pyridyl) iridium (III).

  • PDF

DC 스퍼터링 증착에 의한 AI 전극을 갖는 전계발광소자 제작 (Fabrication of the Electroluminescence Devices with Al electrode deposited by DC sputtering)

  • 윤석범
    • 한국전기전자재료학회논문지
    • /
    • 제13권5호
    • /
    • pp.376-382
    • /
    • 2000
  • We successfully fabricated OLED(Organic Light Emitting Diodes) with Al cathodes electrode deposited by the DC magnetron sputtering. The effects of a controlled Al cathode layer of an Indium Tin Oxide (ITO)/blended single polymer layer (PVK Bu:PBD:dye)/Al light emitting diodes are described. The PVK (Poly(N-vinylcarbazole)) and Bu-PBD (2-(4-biphenyl-phenyl)-1,3,4-oxadiazole) are used hole transport polymer and electron transport molecule respectively. We found that both current injection and electroluminescence output are significantly different with a variable DC sputtering power. The difference is believed to be due to the influence near the blended polymer layer/cathode interface that results from the DC power and H$\sub$2//O in a chamber. And DC sputtering deposition is an effective way to fabricate Al electrodes with pronounced orientational characteristics without damage occurring to metal-organic interface during the sputtering deposition.

  • PDF

OLED Barrier와 Encapsulation을 위한 원자층 증착 Polymer / Al2O3 다층 필름의 온습도 신뢰도 평가 분석 (Reliability Evaluation of Atomic layer Deposited Polymer / Al2O3 Multilayer Film for Encapsulation and Barrier of OLEDs in High Humidity and Temperature Environments)

  • 이사야;송윤석;김현;류상욱
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.1-4
    • /
    • 2017
  • Encapsulation of organic based devices is essential issue due to easy deterioration of organic material by water vapor. Atomic layer deposition (ALD) is a promising solution because of its low temperature deposition and quality of the deposited film. Moisture permeation has a mechanism to pass through defects, Thin Film Encapsulation using inorganic / organic / inorganic hybrid film has been used as promising technology. $Al_2O_3$ / Polymer / $Al_2O_3$ multilayer film has shown excellent environmental protection characteristics despite of thin thicknesses of the films.

  • PDF

유기전자소자 적용을 위한 저온 공정용 배리어 박막 연구 (Low-Temperature Processed Thin Film Barrier Films for Applications in Organic Electronics)

  • 김준모;안명찬;장영찬;배형우;이원호;이동구
    • 센서학회지
    • /
    • 제28권6호
    • /
    • pp.402-406
    • /
    • 2019
  • Recently, semiconducting organic materials have been spotlighted as next-generation electronic materials based on their tunable electrical and optical properties, low-cost process, and flexibility. However, typical organic semiconductor materials are vulnerable to moisture and oxygen. Therefore, an encapsulation layer is essential for application of electronic devices. In this study, SiNx thin films deposited at process temperatures below 150 ℃ by plasma-enhanced chemical vapor deposition (PECVD) were characterized for application as an encapsulation layer on organic devices. A single structured SiNx thin film was optimized as an organic light-emitting diode (OLED) encapsulation layer at process temperature of 80 ℃. The optimized SiNx film exhibited excellent water vapor transmission rate (WVTR) of less than 5 × 10-5 g/㎡·day and transmittance of over 87.3% on the visible region with thickness of 1 ㎛. Application of the SiNx thin film on the top-emitting OLED showed that the PECVD process did not degrade the electrical properties of the device, and the OLED with SiNx exhibited improved operating lifetime

유기발광다이오드 디스플레이의 광효율 향상을 위한 반사방지필름 설계 (Antireflective Film Design to Improve the Optical Efficiency of Organic Light-emitting Diode Displays)

  • 김기만;임영진;레 반 도안;이기동;이승희
    • 한국광학회지
    • /
    • 제29권6호
    • /
    • pp.262-267
    • /
    • 2018
  • 본 논문에서는 유기발광다이오드 디스플레이(OLED)의 광 효율을 향상시키기 위해 방사방지필름을 새롭게 디자인하였다. 현재 상용화되고 있는 편광판의 편광도와 투과율을 변화시켜 OLED 반사방지필름에 사용하였을 경우 정면과 측면방향의 반사특성을 계산하였다. 그 결과 편광도가 99.995%나 99.990%인 상용화된 편광판의 편광도를 99.9% 수준으로 떨어뜨릴 경우, 반사방지필름의 평균 시감반사율은 사람의 눈으로 알아차리기 힘든 약 0.1% (증가율 환산 2.5%) 상승한 반면, 투과율은 기존보다 약 1.63~3.34%(증가율 환산 4.2~8.2%) 상승하였다. 이 결과는 기존 OLED에서 저반사율을 유지하면서 광효율을 상승시킬 수 있는 광학설계 조건을 제시하였다.