• Title/Summary/Keyword: OIAP

Search Result 2, Processing Time 0.015 seconds

Vulnerability Analysis of Insider Attack on TPM Command Authorization Protocol and Its Countermeasure (TPM 명령어 인가 프로토콜에 대한 내부자 공격 취약점 분석 및 대응책)

  • Oh, Doo-Hwan;Choi, Doo-Sik;Kim, Ki-Hyun;Oh, Soo-Hyun;Ha, Jae-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1356-1366
    • /
    • 2011
  • The TPM(Trusted Platform Module) is a hardware chip to support a trusted computing environment. A rightful user needs a command authorization process in order to use principal TPM commands. To get command authorization from TPM chip, the user should perform the OIAP(Object-Independent Authorization Protocol) or OSAP(Object-Specific Authorization Protocol). Recently, Chen and Ryan alerted the vulnerability of insider attack on TPM command authorization protocol in multi-user environment and presented a countermeasure protocol SKAP(Session Key Authorization Protocol). In this paper, we simulated the possibility of insider attack on OSAP authorization protocol in real PC environment adopted a TPM chip. Furthermore, we proposed a novel countermeasure to defeat this insider attack and improve SKAP's disadvantages such as change of command suructures and need of symmetric key encryption algorithm. Our proposed protocol can prevent from insider attack by modifying of only OSAP command structure and adding of RSA encryption on user and decryption on TPM.

An Off-line Dictionary Attack on Command Authorization in TPM and its Countermeasure (TPM에서 명령어 인가에 대한 오프라인 사전 공격과 대응책)

  • Oh, Doo-Hwan;Choi, Doo-Sik;Kim, Ki-Hyun;Ha, Jae-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1876-1883
    • /
    • 2011
  • The TPM is a hardware chip for making a trusted environment on computing system. We previously need a command authorization process to use principal TPM commands. The command authorization is used to verify an user who knows a usage secret to TPM chip. Since the user uses a simple password to compute usage secret, an attacker can retrieve the password by evasdropping messages between user and TPM chip and applying off-line dictionary attack. In this paper, we simulate the off-line dictionary attack in real PC environment adopted a TPM chip and propose a novel countermeasure to defeat this attack. Our proposed method is very efficient due to its simplicity and adaptability without any modification of TPM command structures.