• Title/Summary/Keyword: OH bond

Search Result 443, Processing Time 0.026 seconds

On the Decomposition of Dimethyl-2, 2-dichlorovinylphosphate (Dimethyl-2, 2-dichlorovinylphosphate의 분해반응에 관한 연구)

  • Sung, Nack-Do;Park, Seung-Heui
    • Applied Biological Chemistry
    • /
    • v.26 no.2
    • /
    • pp.125-131
    • /
    • 1983
  • Formal net charges, bond populations, atomic orbital coefficients, energy components and conformation of dimethyl-2,2-dichlorovinylphosphate have been studied theoretically by using the CNDO/2 molecular orbital calculation method in attempt to describe the reactivity and the stability of the molecule. From the analysis of rate equation, molecular orbital calculations and identification of the hydrolysis products, 2,2-dichloroacetaldehyde and dimethylphosphoric acid, a mechanism of the hydrolysis of dimethyl-2,2-dichlorovinylphosphate(DDVP) has been proposed. The hydrolysis of DDVP proceeds through the mechanism of nucleophilic addition, typical Micheal reaction in basic media. Therefore, it appears probable that the attack by strong nucleophile, hydroxide ion occurs at the increased positive charge $C_2({\alpha})$ atom of a staggered conformation due to the inductive effect (-)I>(+)R of 2,2-dichlorovinyl, electron-attracting group. And then, the hydrolytic scission involves the $C_2({\alpha})-O_3$, ${\pi}-anti-bonding\;orbital({\pi}^*)$ in the subsequent reaction in aqueous solution.

  • PDF

Uranium Adsorption Properties and Mechanisms of the WRK Bentonite at Different pH Condition as a Buffer Material in the Deep Geological Repository for the Spent Nuclear Fuel (사용후핵연료 심지층 처분장의 완충재 소재인 WRK 벤토나이트의 pH 차이에 따른 우라늄 흡착 특성과 기작)

  • Yuna Oh;Daehyun Shin;Danu Kim;Soyoung Jeon;Seon-ok Kim;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.603-618
    • /
    • 2023
  • This study focused on evaluating the suitability of the WRK (waste repository Korea) bentonite as a buffer material in the SNF (spent nuclear fuel) repository. The U (uranium) adsorption/desorption characteristics and the adsorption mechanisms of the WRK bentonite were presented through various analyses, adsorption/desorption experiments, and kinetic adsorption modeling at various pH conditions. Mineralogical and structural analyses supported that the major mineral of the WRK bentonite is the Ca-montmorillonite having the great possibility for the U adsorption. From results of the U adsorption/desorption experiments (intial U concentration: 1 mg/L) for the WRK bentonite, despite the low ratio of the WRK bentonite/U (2 g/L), high U adsorption efficiency (>74%) and low U desorption rate (<14%) were acquired at pH 5, 6, 10, and 11 in solution, supporting that the WRK bentonite can be used as the buffer material preventing the U migration in the SNF repository. Relatively low U adsorption efficiency (<45%) for the WRK bentonite was acquired at pH 3 and 7 because the U exists as various species in solution depending on pH and thus its U adsorption mechanisms are different due to the U speciation. Based on experimental results and previous studies, the main U adsorption mechanisms of the WRK bentonite were understood in viewpoint of the chemical adsorption. At the acid conditions (<pH 3), the U is apt to adsorb as forms of UO22+, mainly due to the ionic bond with Si-O or Al-O(OH) present on the WRK bentonite rather than the ion exchange with Ca2+ among layers of the WRK bentonite, showing the relatively low U adsorption efficiency. At the alkaline conditions (>pH 7), the U could be adsorbed in the form of anionic U-hydroxy complexes (UO2(OH)3-, UO2(OH)42-, (UO2)3(OH)7-, etc.), mainly by bonding with oxygen (O-) from Si-O or Al-O(OH) on the WRK bentonite or by co-precipitation in the form of hydroxide, showing the high U adsorption. At pH 7, the relatively low U adsorption efficiency (42%) was acquired in this study and it was due to the existence of the U-carbonates in solution, having relatively high solubility than other U species. The U adsorption efficiency of the WRK bentonite can be increased by maintaining a neutral or highly alkaline condition because of the formation of U-hydroxyl complexes rather than the uranyl ion (UO22+) in solution,and by restraining the formation of U-carbonate complexes in solution.

The influence of fitness and type of luting agents on bonding strength of fiber-reinforced composite resin posts (섬유강화 복합레진 포스트의 결합강도에 대한 포스트 공간 적합도 및 접착 시멘트의 영향)

  • Kkot-Byeol Bae;Hye-Yoon Jung;Yun-Chan Hwang;Won-Mann Oh;In-Nam Hwang
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.4
    • /
    • pp.187-194
    • /
    • 2023
  • Purpose: A mismatched size in the post and post space is a common problem during post-fixation. Since this discordance affects the bonding strength of the fiber-reinforced composite resin post (FRC Post), a corresponding luting agent is required. The aim of this study was to evaluate the bonding strength of the FRC post according to the fitness of the fiber post and the type of luting agent. Materials and Methods: Thirty mandibular premolar were endodontic-treated and assigned to two groups according to their prepared post space: Fitting (F) and Mismatching (M). These groups were further classified into three subgroups according to their luting agent: RelyX Unicem (ReX), Luxacore dual (Lux), and Duolink (Duo). A push-out test was performed to measure the push-out bond strengths. The fractured surfaces of each cross-section were then examined, and the fracture modes were classified. Results: In the ReX and Duo subgroups, the F group had a higher mean bond strength; however, the Lux subgroup had no significant difference between the F and M groups. In the analysis of the failure modes, the ReX subgroup had only adhesive failures between the cement and dentin. Conclusion: The result of this study showed that the bond strength of an FRC post was influenced by the type of luting agent and the mismatch between the diameter of the prepared post space and that of the post.

High Temperature Tribology Behavior of 4YSZ Coatings Fabricated by Air Plasma Spray (APS) and Electron Beam Physical Vapor Deposition (EB-PVD) (플라즈마 용사 및 전자빔 물리기상 증착법으로 제조된 4YSZ 코팅의 고온마찰마모 거동)

  • Yang, Young-Hwan;Park, Chan-Young;Lee, Won-Jun;Kim, Sun-Joo;Lee, Sung-Min;Kim, Seongwon;Kim, Hyung-Tae;Oh, Yoon-Suk
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.6
    • /
    • pp.258-263
    • /
    • 2013
  • 4 mol% Yttria-stabilized zirconia (4YSZ) coatings are fabricated by Air Plasma Spray (APS) and Electron Beam Physical Vapor Deposition (EB-PVD) with top coating of thermal barrier coating (TBC). NiCrAlY based bond coat is prepared as 150 ${\mu}m$ thickness by conventional APS (Air Plasma Spray) method on the NiCrCoAl alloy substrate before deposition of top coating. Each 4YSZ top coating shows different tribological behaviors based on the inherent layer structures. 4YSZ by APS which has splat-stacked structure shows lower friction coefficient but higher wear rate than 4YSZ by EB-PVD which has columnar structure. For 4YSZ by APS, such results are expected due to the sliding wear accompanied with local delamination of splats.

Bonding Performance of Maltodextrin and Citric Acid for Particleboard Made From Nipa Fronds

  • Santoso, Mahdi;Widyorini, Ragil;Prayitno, Tibertius Agus;Sulistyo, Joko
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.432-443
    • /
    • 2017
  • Maltodextrin and citric acid are two types of natural materials with the potential as an eco-friendly binder. Maltodextrin is a natural substance rich in hydroxyl groups and can form hydrogen bonds with lignoselulosic material, while citric acid is a polycarboxylic acid which can form an ester bond with a hydroxyl group at lignoselulosic material. The combination of maltodextrin and citric acid as a natural binder materials supposed to be increase the ester bonds formed within the particleboard. This research determined to investigate the bonding properties of a new adhesive composed of maltodextrin/citric acid for nipa frond particleboard. Maltodextrin and citric acid were dissolved in distillated water at the ratios of 100/0, 87.5/12.5, 75/25 and 0/100, and the concentration of the solution was adjusted to 50% for maltodextrin and 60% citric acid (wt%). This adhesive solution was sprayed onto the particles at 20% resin content based on the weight of oven dried particles. Particleboards with a size of $25{\times}25{\times}1cm$, a target density $800kg/m^3$ were prepared by hot-pressing at press temperatures of $180^{\circ}C$ or $200^{\circ}C$, a press time of 10 minute and board pressure 3.6 MPa. Physical and mechanical properties of particleboard were tested by a standard method (JIS A 5908). The results showed that added citric acid level in maltodextrin/citric acid composition and hot-pressing temperature had affected to the properties of particleboard. The optimum properties of the board were achieved at a pressing temperature of $180^{\circ}C$ and the addition of only 20% citric acid. The results also indicated that the peak intensity of C=O group increased and OH group decreased with the addition of citric acid and an increase in the pressing temperature, suggesting an interreaction between the hydroxyl groups from the lignocellulosic materials and carboxyl groups from citric acid to form the ester groups.

Studies on the Semicarbazone Formation of Aliphatic and Alicyclic Ketones. (Aliphatic Ketone과 Alicyclic Ketone의 Semicarbazone 생성반응에 관한 연구)

  • Lim, Nag-Bin;Oh, Yang-Hwan;Kim, Yong-In
    • Journal of the Korean Applied Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.59-67
    • /
    • 1991
  • The reactions of semicarbazide hydrochloride with aliphatic and alicyclic ketones were studied kinetically at 15, 25, 35 and 45$^{\circ}C$ in 20% ethanol solution buffered at pH 2.9. The rate of cyclohexanone semicarbazone formation is 5.5 times as fast as that of cyclopentanone semicarbazone, while 3-pentanone semicarbazone is 4.7 times as slow as that of 2-pentanone, The activation energy of cyclohexanone, 2-pentanone, 2 hexanone, cyclopentanone, 4-methyl-2-pentanone and 3-pentanone semicarbazone formation are calculated 5.08, 7.52, 8.79, 9.59, 9.49, 11.59, respectively. It is concluded from the effect of ionic strength that the reaction is affected by not ion but neutral molecules being progressed hydrogen bond between oxygen atom of carbonyl group and hydrogen atom of acid-catalyst and concerted nucleophilic attack of free base on the carbonly compound. Dependence on pH of the rate of 2-pentanone semicarbozone formation is linear relationship below pH 4.60 and above pH 5.60. As a result of studing citric acid catalysis, second order constants increase linearly with citric acid concentration. As the catalyst concentration is varied from 0.025 to 0.10 mol/1 at pH 2.90, the rate constants increase 1.4 times, but slight increase is observed at pH 5.60. Conclusively, the rate-determining step is formation of tetrahedral interemediate below pH 4.65 and dehydration between pH 5.60 and pH 7.11. It is concluded that the formation reaction of cyclohexanone semicarbazone is faster than cyclopentanone semicarbazone due to the steric strain in the process of forming tetrahedral intermediate.

Effect of Bonding Process Conditions on the Interfacial Adhesion Energy of Al-Al Direct Bonds (접합 공정 조건이 Al-Al 접합의 계면접착에너지에 미치는 영향)

  • Kim, Jae-Won;Jeong, Myeong-Hyeok;Jang, Eun-Jung;Park, Sung-Cheol;Cakmak, Erkan;Kim, Bi-Oh;Matthias, Thorsten;Kim, Sung-Dong;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.319-325
    • /
    • 2010
  • 3-D IC integration enables the smallest form factor and highest performance due to the shortest and most plentiful interconnects between chips. Direct metal bonding has several advantages over the solder-based bonding, including lower electrical resistivity, better electromigration resistance and more reduced interconnect RC delay, while high process temperature is one of the major bottlenecks of metal direct bonding because it can negatively influence device reliability and manufacturing yield. We performed quantitative analyses of the interfacial properties of Al-Al bonds with varying process parameters, bonding temperature, bonding time, and bonding environment. A 4-point bending method was used to measure the interfacial adhesion energy. The quantitative interfacial adhesion energy measured by a 4-point bending test shows 1.33, 2.25, and $6.44\;J/m^2$ for 400, 450, and $500^{\circ}C$, respectively, in a $N_2$ atmosphere. Increasing the bonding time from 1 to 4 hrs enhanced the interfacial fracture toughness while the effects of forming gas were negligible, which were correlated to the bonding interface analysis results. XPS depth analysis results on the delaminated interfaces showed that the relative area fraction of aluminum oxide to the pure aluminum phase near the bonding surfaces match well the variations of interfacial adhesion energies with bonding process conditions.

TENSILE BOND STRENGTH OF SOLDER JOINT BETWEEN GOLD ALLOY AND NICKEL-CHROMIUM ALLOY (금합금과 Ni-Cr 합금의 납착부 인장강도)

  • Jeong, Jun-Oh;Choi, Hyeon-Mi;Choi, Jeong-Ho;Ahn, Seung-Geun;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.143-150
    • /
    • 1996
  • The purpose of this study was to evaluate the tensile strength of solder joint between gold alloy and nickel-chromium alloy. The specimens were made with type III gold alloys and Ni-Cr-Be alloy and Degular Lot 2 solder. Eighteen paired specimens were made, and subdivided into three groups. Group I specimens were gold alloy-gold alloy combination, Group II specimens were gold alloy-Ni-Cr alloy combination, Group III specimens were Ni-Cr alloy-Ni-Cr alloy combination. Solder block were made with solder investment(Degussa A,G, Germany) and stored in room temperature for 24 hours. To reduce the formation of metallic oxide and increase wetting properties, flux was used before preheating and soldering procedure. The specimens were preheated at $650^{\circ}C$ and flux were applied again and gas-oxygen torch was used to solder the specimen. All soldered specimens were subjected to a tensile force in the Instron universal testing machine : the crosshead speed was 1 mm/mim. Tensile strength values of three soldered joint groups were 1. Gold alloy-Gold alloy solder joint : $$48.8kg/mm^2$$ 2. Gold alloy-Ni-Cr alloy solder joint : $$30.9kg/mm^2$$ 3. Ni-Cr alloy-Ni-Cr alloy solder joint : $$31.8kg/mm^2$$ The microscopic examination of fracture site showed cohesive and combination fracture modes in gold alloy specimens, but showed all adhesive fracture modes in Ni-Cr alloy containing specimens.

  • PDF

A Study on the Relationship between Dissimilar Metals Friction Welded Joints Strength Properties and Ultrasonic Reflection Coefficients (이종재 마찰용접부 강도특성과 초음파 반사계수와의 상관성에 관한 연구)

  • S. K. Oh;D. J. Kim;S. D. Han
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.34-34
    • /
    • 1987
  • Friction welding has emerged as a reliable process for high-production commercial application with significant economic and technical advantages. But nondestructive test in friction weld was not clearly developed. Therefore the experimental verification is necessary in order to understand the characteristics of the pulse echo effects according to various change in welding conditions. This paper presents a new attempt to detect the bond strength of friction welds by ultrasonic. Instead of looking for a flaw or cracks at the interface, the new approach evaluates the coefficient by reflection which provides a single quantitative indicator involving the acoustic energy reflected at the interface. The objective of this study is to find the relationship between the reflection coefficients and the weld strength. Results of the bar-to-bar friction welding of aluminum to copper and stainless steel and such relationship investigation are presented and interpreted.

Experimental Verification on the Structural Safety of Cantilever Beam Connected with Post-installed Adhesive Anchor Bolts (부착식 후설치 앵커로 연결된 내민보의 구조 안전성에 대한 실험적 평가)

  • Oh, Hong-Seob;Park, Sung-Rak
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.529-536
    • /
    • 2011
  • Recently, there has been a growing interest in expanded sidewalks for existing bridges. The cantilever beam system applied to expanded sidewalks for existing bridges are connected with the concrete structure by adhesive anchor bolts. However, the extended sidewalks are currently constructed without standardized regulations, which lead to excessive design of the beam spacing and installation and the construction difficulties due to the excessive over-weight. Moreover, there is only limited analysis and experiment data on the post-installed adhesive anchor bolts, so the excessive number of bolts is used for the connection. This paper deals with a method to increase the effectiveness of beam sections and anchor bolts geometry for expanded sidewalk of existing bridge. The study results showed that the failure of cantilever beam connected by adhesive anchor bolts was dominated by bond failure of interface between concrete and bolt. Also, the results indicated the possibilities of improving serviceability as well as safety of the sidewalks by changing of beam section and prestressing the bolts.