• Title/Summary/Keyword: OH 라디칼($OH^{\circ}$)

Search Result 42, Processing Time 0.026 seconds

Characterization of Diethyl Phthalate(DEP) Removal using Ozone, UV, and Ozone/UV Combined Processes (오존, UV, 오존/UV 혼합 공정을 이용한 Diethyl Phthalate(DEP)의 제거특성 연구)

  • Jung, Yeon-Jung;Oh, Byung-Soo;Kang, Joon-Wun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.137-143
    • /
    • 2006
  • Three candidate processes(ozone alone, UV alone and ozone/UV combined processes) were evaluated for the removal of diethyl phthalate(DEP). Of the candidates, the ozone/UV process showed the highest removal efficiency of DEP. To elucidate a major oxidant for DEP oxidation in the ozone/UV process, the effects of pH and hydroxyl radical($OH^{\circ}$) scavenger were investigated. As a result, it was found that $OH^{\circ}$ plays a important role for DEP elimination. Meanwhile, the direct reaction between ozone and DEP was negligible. Observing the pseudo first-order rate of DEP removal in ozone alone and ozone/UV processes, the different pattern was obtained from two processes. The ozone/UV process was well plotted following the pseudo first-order. but in the ozone alone process the rate was divided into fast and slow phases. DEP degradation characteristics in ozone alone and ozone/UV was also investigated by observing the HPLC spectrum. We detected unknown compounds that were guessed to DEP byproducts and observed the formation and disappearance of the unknown compounds according to reaction time. Observing of high removal of TOC in ozone/UV combined process, it was found that DEP and DEP byproducts are completely oxidized by ozone/UV combined process.

A Study on the Characteristics of Sonication Combined with UV in the Degradation of Phenol (초음파와 UV에 의한 페놀 분해 특성에 관한 연구)

  • Kim, Seong-Keun;Son, Hyun-Seok;Im, Jong-Kwon;Khim, Jee-Hyeong;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.649-655
    • /
    • 2010
  • This study investigated the degradation of phenol using sonication and/or UV-C. The effects of frequency, temperature, pH in solution, argon purging, with UV intensity were estimated in sonication-only, UV-only, and the combined reaction of sonication with UV. The optimum condition for degrading phenol in the sonication-only reaction was 35 kHz, $5^{\circ}C$, and pH 4. As this condition approximately 30% degradation of phenol was achieved within 360 min. However, phenol in the UV-only at $19.3\;mw/cm^2$ under the same condition was completely degraded within 60 min. In the combined system of sonication with UV, the degradation of phenol was well fitted to first-order rate model, and phenol was completely degraded within 360 min and 45 min at UV intensity of $7.6\;mW/cm^2$($17.3{\times}10^{-3}\;min^{-1}$) and $19.3\;mW/cm^2$($138.1{\times}10^{-3}\;min^{-1}$), respectively. Adding methanol, as a radical scavenger, in the phenol degradation in the sonication reaction indicates that OH radical is a major factor in the degradation of phenol. The order of degradation efficiencies of phenol was in the order of as follows; combined reaction of sonication with UV > UV-only > sonication-only.

Degradation of Nafion Membrane by Oxygen Radical (산소 라디칼에 의한 Nafion 막의 열화)

  • Kim, Taehee;Lee, Junghun;Cho, Gyoujin;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.597-601
    • /
    • 2006
  • The degradation of the Nafion membrane by oxygen radical (OH, $HO_2$) was investigated in Polymer electrolyte membrane fuel cell (PEMFC). Nafion membrane was degraded in Fenton solution consisted with hydrogen peroxide (10-30%) and ferrous ion (1-4 ppm) at $80^{\circ}C$. After degradation in Fenton solution, C-F, S-O and C-O chemical bonds of membrane were broken by oxygen radical attack. Breaking of C-F bond reduced the mechanical strength of Nafion membrane, and hence induced pinholes, resulting in increase of $H_2$ crossover through the membrane. Decomposition of S-O and C-O bonds decreased the ion exchange capacity of the electrolyte membrane. The performance of unit cell composed the membrane, which was degraded in 30% $H_2O_2$ with 4ppm $Fe^{2+}$ solution for 48 hr, was about half times as low as one with normal membrane.

Effect of Temperature on Electrochemical Degradation of Membrane in PEMFC (PEMFC 고분자 막의 전기화학적 열화에 미치는 온도의 영향)

  • Lee, Ho;Kim, Taehee;Son, Ik Jae;Lee, Jong Hyun;Lim, Tae Won;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.441-445
    • /
    • 2009
  • Effect of temperature on membrane degradation in PEMFCs was studied. After cell operation at different temperatures($60{\sim}90^{\circ}C$) under accelerating degradation conditions(OCV, anode dry, cathode RH 65%) for 144 h, cell performance decreased from 12 to 35%. The results of FER in effluent water showed that this decrease in cell performance was caused by membrane degradation by the attack of $H_2O_2$ or oxygen radicals(${\cdot}OH$, $HO_2{\cdot}$) and that resulted in increase in gas crossover for radical formation. Radical formation on the electrode was confirmed by ESR. Activation energy of 66.2 kJ/mol was obtained by Arrhenius plot used to analyze the effect of temperature on membrane degradation. Increase of cell temperature enhanced gas crossover rate, radical formation rate and membrane degradation rate.

The Effect of Reaction Temperature and Volume in the Sonolysis of 1,4-Dioxane (1,4-Dioxane의 초음파 처리시 반응 온도와 부칙의 영향)

  • Son, Hyun-Seok;Choi, Seok-Bong;Eakalak, Khan;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1114-1122
    • /
    • 2005
  • This research investigates the effects of sonication mode, reaction temperature and volume on sonolysis of 1,4-dioxane in order to increase the degradation efficiency and kinetics. The degradation efficiency in case with pulse mode was about 10 % higher than that in case with continuous mode. The degradation profiles in both cases, which were performed without the control of reaction temperature and in 1000 mL, were composed of three steps. However, 1,4-D was mainly degraded in the initiation step as the first portion and the acceleration step as the second portion. The initial step agreed with zero-order expression well, while the acceleration step could be fitted with pseudo 1st-order expression. The kinetic model in case with $5^{\circ}C$ and 300 mL conformed to pseudo 1st-order, while that in cases with $10^{\circ}C$ to $40^{\circ}C$ agreed with zero-order expression. The degradation efficiency and profile of 1,4-D in the experiment with $20^{\circ}C$ and 300 mL was higher and simpler than that in case with $20^{\circ}C$ and 1000 mL. The reaction temperature and volume influence bubble intensity, which was produced in sonication. The increase of bubble intensity induced to augment the production of OH radical in sonication.

Antioxidant Activity of Rosa rugosa (해당화의 항산화 효과)

  • 서영완;이희정;안종웅;이범종;문성기
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.67-71
    • /
    • 2004
  • An antioxidant activity of Rosa rugosa extract and its solvent-partitioned fractions was determined not only by measuring lipid peroxide produced when a mouse liver homogenate was exposed to the air at 37$^{\circ}C$, using thiobarbituric acid (TBA) but also by evaluating the free radical scavenging effect against DPPH radical, authentic peroxynitrite, and 3-morpholinsydnonimine (SIN-1). All its partitioned fractions including crude extract showed potent scavenging effect against DPPH radical, peroxynitrite, and lipid peroxidation. n-BuOH fraction, in particular, was found to be the most effective in DPPH radical scavenging ability as well as inhibition against lipid peroxidation. The 15% aqueous MeOH fraction also showed a strong potency which was slightly lower than n-BuOH fraction. Based on these results, we suggest that Rosa rugosa could be useful for preventing an oxidative damage.

Comparison of Naphthalene Degradation Efficiency and OH Radical Production by the Change of Frequency and Reaction Conditions of Ultrasound (초음파 주파수 및 반응조건 변화에 따른 나프탈렌 분해효율과 OH 라디칼의 발생량 비교)

  • Park, Jong-Sung;Park, So-Young;Oh, Je-Ill;Jeong, Sang-Jo;Lee, Min-Ju;Her, Nam-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.79-89
    • /
    • 2009
  • Naphthalene is a volatile, hydrophobic, and possibly carcinogenic compound that is known to have a severe detrimental effect to aquatic ecosystem. Our research examined the effects of various operating conditions (temperature, pH, initial concentration, and frequency and type of ultrasound) on the sonochemical degradation of naphthalene and OH radical production. The MDL (Method detection limit) determined by LC/FLD (1200 series, Agilient) using C-18 reversed column is measured up to 0.01 ppm. Naphthalene vapor produced from ultrasound irradiation was detected under 0.05 ppm. Comparison of naphthalene sonodegradion efficiency tested under open and closed reactor cover fell within less than 1% of difference. Increasing the reaction temperature from $15^{\circ}C$ to $40^{\circ}C$ resulted in reduction of naphthalene degradation efficiency ($15^{\circ}C$: 95% ${\rightarrow}$ $40^{\circ}C$: 85%), and altering pH from 12 to 3 increased the effect (pH 12: 84% ${\rightarrow}$pH 3: 95.6%). Pseudo first-order constants ($k_1$) of sonodegradation of naphthalene decreased as initial concentration of naphthalene increased (2.5 ppm: $27.3{\times}10^{-3}\;min^{-3}\;{\rightarrow}$ 10 ppm : $19.3{\times}10^{-3}\;min^{-3}$). Degradation efficiency of 2.5 ppm of naphthalene subjected to 28 kHz of ultrasonic irradiation was found to be 1.46 times as much as when exposed under 132 kHz (132 kHz: 56%, 28 kHz: 82.7%). Additionally, its $k_1$ constant was increased by 2.3 times (132 kHz: $2.4{\times}10^{-3}\;min^{-1}$, 28 kHz: $5.0{\times}10^{-3}\;min^{-1}$). $H_2O_2$ concentration measured 10 minutes after the exposure to 132 kHz of ultrasound, when compared with the measurement under frequency of 28 kHz, was 7.2 times as much. The concentration measured after 90 minutes, however, showed the difference of only 10%. (concentration of $H_2O_2$ under 28 kHz being 1.1 times greater than that under 132 kHz.) The $H_2O_2$ concentration resulting from 2.5 ppm naphthalene after 90 minutes of sonication at 24 kHz and 132 kHz were lower by 0.05 and 0.1 ppm, respectively, than the concentration measured from the irradiated M.Q. water (no naphthalene added.) Degradation efficiency of horn type (24 kHz) and bath type (28 kHz) ultrasound was found to be 87% and 82.7%, respectively, and $k_1$ was calculated into $22.8{\times}10^{-3}\;min^{-1}$ and $18.7{\times}10^{-3}\;min^{-1}$ respectively. Using the multi- frequency and mixed type of ultrasound system (28 kHz bath type + 24 kHz horn type) simultaneously resulted in combined efficiency of 88.1%, while $H_2O_2$ concentration increased 3.5 times (28 kHz + 24 kHz: 2.37 ppm, 24 kHz: 0.7 ppm.) Therefore, the multi-frequency and mixed type of ultrasound system procedure might be most effectively used for removing the substances that are easily oxidized by the OH radical.

Antioxidative Activities of Temperature-stepwise Water Extracts from Inonotus obliquus (차가버섯의 온도단계별 물추출물의 항산화성 비교)

  • Lee, Sang-Ok;Kim, Min-Jeong;Kim, Dong-Gyun;Choi, Hyun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.139-147
    • /
    • 2005
  • The efficacy of extraction from Inonotus obliquus was examined from the points of antioxidative characteristics and some antioxidative compounds. To enhance the efficient extraction for the effective components from Inonotus obliquus, temperature-stepwise water extraction method was applied. Temperature-stepwise water extracts were prepared for 8 hrs as follows: the first extract at 8$0^{\circ}C$, the second extract from the residue of the first extract at 10$0^{\circ}C$, and the third extract from the residue of the second extract at 12$0^{\circ}C$. Antioxidativeactivities were determined by electron-donating ability of DPPR - free radical, scavenging ability of ABTS$.$$^{+}$radical cation, and by inhibiting ability of linoleic acid autoxidation. In results, the first extract showed the least antioxidant capacity, and the third extract showed the highest antioxidant capacity. The third extract also had the greatest amounts of phenolic compounds and flavonoids. Amounts of phenolic compound from each extract were almost proportional to the radical scavenging activities and linoleic acid autoxidation inhibiting ability (r=0.960∼0.980, regression analysis). Furthermore, the effect of the pooled extract of all three extractions of Inonotus obliquus on the lipid peroxidation reacted with active oxygen species (KO$_2$, $H_2O$$_2$, $.$OH) and metals (Fe$^{2+}$, CU$^{2+}$) was evaluated by measuring the formation of thiobarbituric acid reactive substances (TBARS). The pooled Inonotus obliquus extracts lowered the amounts of TBARS formed by all of the active oxygen species and metals. Especially, these lowering effects were pronounced in the reaction with $.$OH and Fe$^{2+}$. These results suggest that the pooled temperature-stepwise extract from Inonotus obliquus could be potential functional materials to reduce the oxidation of lipids and other compounds induced by free radicals.adicals.

Effects of Electrodeposition Parameters on Electrochemical Hydroxyl Radical Evolution of PbO2 Electrode (이산화납 전극 제조 시 전기화학적 증착인자가 수산화라디칼 발생에 미치는 영향)

  • Shim, Soojin;Yoon, Jeyong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.647-655
    • /
    • 2016
  • Lead dioxide ($PbO_2$) is an electrode material that is effective for organic pollutant degradation based on hydroxyl radical ($^{\bullet}OH$) attack. Representative parameters for $PbO_2$ electrodeposition are summarized to current, temperature, reaction time, concentration of Pb(II) and electrolyte agent. In this study, $Ti/PbO_2$ electrodes were fabricated by electrodeposition method under controlled reaction time, current density, temperature, concentration of $HNO_3$ electrolyte. Effects of deposition parameters on $^{\bullet}OH$ evolution were investigated in terms of electrochemical bleaching of p-Nitrosodimethylaniline (RNO). As major results, the $^{\bullet}OH$ evolution was promoted at the $PbO_2$ that was deposited in longer reaction time (1-90 min), lower current density ($0.5-50mA/cm^2$), higher temperature ($5-65^{\circ}C$) and lower $HNO_3$ concentration (0.01-1.0 M). Especially, the $PbO_2$ which was deposited in 0.01 M of lowest $HNO_3$ concentration by applying $20mA/cm^2$ for above 10 min was most effective on $^{\bullet}OH$ evolution. The performance gap between $PbO_2$s that was best and worst in $^{\bullet}OH$ evolution was about 41%. Among the properties of $PbO_2$ related on $^{\bullet}OH$ evolution performance, conductivity of $Ti/PbO_2$ significantly influenced on $^{\bullet}OH$ evolution. The increase in conductivity promoted $^{\bullet}OH$ evolution. In addition, the increase in crystal size of $PbO_2$ interfered $^{\bullet}OH$ evolution at surface of some $PbO_2$ deposits.

Effect of Extraction Conditions on in vitro Antioxidant Activities of Root Bark Extract from Ulmus pumila L. (추출조건에 따른 유근피 추출물의 항산화 활성)

  • Kim, Jae-Min;Cho, Myoung-Lae;Seo, Kyu-Eun;Kim, Ye-Seul;Jung, Tae-Dong;Kim, Young-Hyun;Kim, Dan-Bi;Shin, Gi-Hae;Oh, Ji-Won;Lee, Jong Seok;Lee, Jin-Ha;Kim, Jong-Yae;Lee, Dae-Won;Lee, Ok-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.8
    • /
    • pp.1172-1179
    • /
    • 2015
  • This study investigated optimal extraction conditions for application of Ulmus pumila L. as a natural antioxidant. U. pumila L. was extracted using ethanol (EtOH) at various concentrations (0, 40, and 80%) and extraction times (1, 2, and 3 h) at $70^{\circ}C$ and then evaluated for extraction yield, total phenolic contents, total flavonoid contents, as well as antioxidant activities [2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, reducing power, and oxygen radical absorbing capacity (ORAC)]. Antioxidant activities were correlated with total phenolic and flavonoid contents. Of the solvent conditions, 80% EtOH extracts for 3 h at $70^{\circ}C$ showed the highest total phenolic and flavonoid contents with strong antioxidant activities, although there were no significant time effects on DPPH and ABTS radical scavenging activities and reducing power. However, ORAC values of all EtOH extracts remarkably increased in a time-dependent manner. In addition, 80% EtOH extract for 3 h exhibited strong antioxidant effects on HDF and 3T3-L1 cells. Therefore, the antioxidant capacity of U. pumila L., may due to phenolic and flavonoid contents, and extraction conditions were 80% EtOH for 3 h at $70^{\circ}C$. This extract could be a good source for natural antioxidants.