• Title/Summary/Keyword: OGV

Search Result 4, Processing Time 0.017 seconds

Turbofan and Pylon Flowfields Interaction in Turbofan Engines (터보팬엔진의 터보팬과 파일론 유동장 간섭에 관한 수치적 연구)

  • Joo, Won-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1164-1172
    • /
    • 1998
  • The three dimensional numerical method using actuator disk blade row model is applied for calculating the flowfield interaction between an outlet guide vane (OGV) and a pylon in a typical civil turbofan engine. The static pressure distortion produced by the pylon is decaying upstream but is still felt at the turbofan exit, and hence can significantly affect the fan performance. The OGV amplifies the static pressure perturbation decaying upstream. The calculation results show that cyclic OGV which consists of three types of blades with different exit angles can reduce more than half of the asymmetries of total pressure and static pressure propagated through the OGV with uniform exit blade angle.

Numerical Studies on the S-Shaped Duct Flow for Compressors (압축기용 S형 덕트 유동에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.4 s.25
    • /
    • pp.40-46
    • /
    • 2004
  • This paper is concerned with the numerical analyses of an S-shaped duct for the inter-channel between compressor spools. For the compactness and lightweight of an engine, the length of the S-shaped duct is desired to be minimized. Shortening the S-shaped duct, however, flow separation is likely to occur. Numerical investigation using a three-dimensional Navier-Stokes flow solver was performed to determine the availability of the minimization of an S-shaped duct. Computations were performed introducing the experimental data as the inlet flow condition of the OGV in determining the minimum length of the S-shaped duct. Also, the leaning effect of the OGV which assists the flow to turn radially inward was studied adopting mixing-plane method to consider the rotor/OGV interaction.

Numerical Studies on the S-Shaped Duct for Compressors (압축기용 S형 덕트에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.621-626
    • /
    • 2003
  • This paper is concerned with the numerical analyses of an S-shaped duct for the inter-channel between compressor spools. For the compactness and lightweight of an engine, the length of the S-shaped duct is desired to be minimized. Shortening the S-shaped duct however, flow separation is likely to occur. Numerical investigation using a three-dimensional Navier-Stokes flow solver has been performed to determine the availability of the minimization of an S-shaped duct. Computations are performed introducing the experimental data as the inlet flow condition of the OGV in determining the minimum length of the S-shaped duct. Also, the leaning effect of the OGV which assists the flow to turn radially inward are studied adopting mixing-plane method to consider the rotor/OGV interaction.

  • PDF

Performance Evaluation of a Thrust Reverser Using an Euler Solver (비장착 나셀의 역추력기 형상에 대한 3차원 Euler 유동해석)

  • Kim Soo Mi;Yang Soo Seok;Lee Dae Sung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.167-173
    • /
    • 1999
  • An Euler-based CFD tool has been developed for the performance evaluation of a thrust reverser mounted on a high bypass ratio turbofan engine. The computational domain surrounded by the ground and non-reflection boundary includes the whole nacelle configuration with a deployed thrust reverser. The numerical algorithm is based on the modified Godunovs scheme to allow the second order accuracy in both space and time. The grid system is generated by using eleven multi-blocks, of which the total cell number is 148,400. The thrust reverser is modeled as if it locates at the nacelle simply in all circumferential direction. The existence of a fan and an OGV(Outlet Guide Vane) is simulated by adopting the actuator disk concept, in which predetermined radial distributions of stagnation pressure ratio and adiabatic efficiency coefficient are used for the rotor type disk, and stagnation pressure losses and flow outlet angles for the stator type disk. All boundary conditions including the fan and OGV simulation are treated by Riemann solver. The developed solver is applied to a turbofan engine with a bypass ratio of about 5.7 and the diameter of the fan cowl of 83 inch. The computational results show that the Euler-based inviscid method is very useful and economical to evaluate the performance of thrust reversers.

  • PDF