• Title/Summary/Keyword: OFMDA

Search Result 2, Processing Time 0.016 seconds

A QoS Provisioning Based on Load Balancing for Hand-over in OFDMA System (OFDMA 시스템에서 핸드오버를 위한 부하제어 기반의 QoS 제공 방안)

  • Lee, Jong-Chan;Lee, Moon-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.59-68
    • /
    • 2013
  • Efficient resource management and hand-over schemes are necessary to maintain consistent QoS because it may be severely defected by some delay and information loss during hand-over in LTE-Advanced networks. This paper proposes a resource management scheme based on the load control to support consistent QoS for heterogeneous services during hand-over in OFDMA based systems. Various multimedia services with different requirements for resource are able to be serviced simultaneously because service continuity can be provided by our proposed scheme. Simulation results show that it provides better performances than the conventional one with the measure of hand-over failure rate and packet loss rate.

Channel State-Aware Joint Dynamic Cell Coordination Scheme using Adaptive Modulation and Variable Reuse Factor in OFDMA (OFDMA 하향링크에서 적응적 변조와 여러 개의 재사용 지수를 동시에 사용하고 채널 상태를 고려한 동적 셀 코디네이션)

  • Byun, Dae-Wook;Ki, Young-Min;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.24-33
    • /
    • 2007
  • In this paper, two different dynamic cell coordination strategies for frequency flat and selective fading are proposed for efficient subcarrier allocation in the joint consideration of adaptive modulation and variable frequency reuse in the channel-aware OFDMA downlink multicellular environment. Compared to a conventional OFDMA system without cell coordination, where system throughput may become degraded due to the persistent interference from other cells, the proposed system dynamically allows RNC to apply different reuse factors on each subchannel and scheduling in consideration of channel and interference conditions of individual users so as to increase the system throughput and guarantee QoS of each user. In a frequency flat fading, the dynamic scheme with the proposed scheduling achieves on average three times larger throughput than the conventional dynamic scheme [8]. In a selective fading channel, the proposed schemes showed 2.6 times as large throughput as that of a single reuse factor of one for all subchannels.