• Title/Summary/Keyword: OFDMA scheduling

Search Result 46, Processing Time 0.03 seconds

Wireless Packet Scheduling Algorithm for OFDMA System Based on Time-Utility and Channel State

  • Ryu, Seung-Wan;Ryu, Byung-Han;Seo, Hyun-Hwa;Shin, Mu-Yong;Park, Sei-Kwon
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.777-787
    • /
    • 2005
  • In this paper, we propose an urgency- and efficiency-based wireless packet scheduling (UEPS) algorithm that is able to schedule real-time (RT) and non-real-time (NRT) traffics at the same time while supporting multiple users simultaneously at any given scheduling time instant. The UEPS algorithm is designed to support wireless downlink packet scheduling in an orthogonal frequency division multiple access (OFDMA) system, which is a strong candidate as a wireless access method for the next generation of wireless communications. The UEPS algorithm uses the time-utility function as a scheduling urgency factor and the relative status of the current channel to the average channel status as an efficiency indicator of radio resource usage. The design goal of the UEPS algorithm is to maximize throughput of NRT traffics while satisfying quality-of-service (QoS) requirements of RT traffics. The simulation study shows that the UEPS algorithm is able to give better throughput performance than existing wireless packet scheduling algorithms such as proportional fair (PF) and modified-largest weighted delay first (M-LWDF), while satisfying the QoS requirements of RT traffics such as average delay and packet loss rate under various traffic loads.

  • PDF

Long-Term Performance Evaluation of Scheduling Disciplines in OFDMA Multi-Rate Video Multicast Transmission (OFDMA 다중률 비디오 멀티캐스트 전송에서 스케줄링 방식의 장기적 성능 평가)

  • Hong, Jin Pyo;Han, Minkyu
    • Journal of KIISE
    • /
    • v.43 no.2
    • /
    • pp.246-255
    • /
    • 2016
  • The orthogonal frequency-division multiple access (OFDMA) systems are well suited to multi-rate multicast transmission, as they allow flexible resource allocation across both frequency and time, and provide adaptive modulation and coding schemes. Unlike layered video coding, the multiple description coding (MDC) enables flexible decomposition of the raw video stream into two or more substreams. The quality of the video stream is expected to be roughly proportional to data rate sustained by the receiver. This paper describes a mathematical model of resource allocation and throughput in the multi-rate video multicast for the OFDMA wireless and mobile networks. The impact on mean opinion score (MOS), as a measurement of user-perceived quality (by employing a variety of scheduling disciplines) is discussed in terms of utility maximization and proportional fairness. We propose a pruning algorithm to ensure a minimum video quality even for a subset of users at the resource limitation, and show the optimal number of substreams and their rates can sustain.

An Efficient Downlink Scheduling Scheme Using Prediction of Channel State in an OFDMA-TDD System (OFDMA-TDD 시스템에서 채널상태 예측을 이용한 효율적인 하향링크 스케줄링 기법)

  • Kim Se-Jin;Won Jeong-Jae;Lee Hyong-Woo;Cho Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5A
    • /
    • pp.451-458
    • /
    • 2006
  • In this paper, we propose a novel scheduling algorithm for downlink transmission which utilizes scarce wireless resource efficiently in an Orthogonal Frequency Division Multiple Access/Time Division Duplex system. Scheduling schemes which exploit channel information between a Base Station and terminals have been proposed recently for improved performance. Time series analysis is used to estimate the channel state of mobile terminals. The predicted information is then used for prioritized scheduling of downlink transmissions for improved throughput, delay and jitter performance. Through simulation, we show that the total throughput and mean delay of the proposed scheduling algorithm are improved compared with those of the Proportional Fairness and Maximum Carrier to Interference Ratio schemes.

Time Utility and Channel State based Wireless Downlink Packet Scheduling Algorithm for OFDMA System (OFDMA 무선 시스템에서의 시간-효용과 채널 상태 기반의 하향 링크 패킷 스케줄링)

  • Ryu, Seung-Wan;Seo, Hyun-Hwa;Chung, Soo-Jung;Lim, Soon-Yong;Park, Sei-Kwon
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.111-121
    • /
    • 2004
  • In this paper, we propose an urgency and efficiency based wireless packet scheduling (UEPS) algorithm that is able to schedule real time (RT) and non-real time (NRT) traffics at the same time. The proposed UEPS algorithm is designed to support wireless downlink packet scheduling in the OFDMA system which is a strong candidate wireless system for the next generation mobile communications. The UEPS algorithm uses the time-utility function as a scheduling urgency factor and the relative status of the current channel to the average one as an efficiency indicator of radio resource usage. The design goal of the UEPS algorithm is to maximize throughput of NRT traffics with satisfying QoS requirements of RT traffics. The simulation study shows that the proposed UEPS algorithm is able to give better throughput performance than existing wireless packet scheduling algorithms such as proportional fair (PF) and modified-largest weighted delay first (M-LWDF) while satisfying QoS requirements of RT traffics such as the average delay and the packet loss rate under various traffic loads.

Hybrid Multiple Access for Uplink OFDMA System

  • Jung, Bang-Chul;Kang, Min-Suk;Ban, Tae-Won
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.117-122
    • /
    • 2012
  • We propose a hybrid multiple access (HMA) for uplink orthogonal frequency division multiple access (OFDMA) systems, which combines two resource sharing schemes: a scheduling-based resource allocation (SBRA) scheme and a contentionbased resource allocation (CBRA) scheme. The SBRA scheme is appropriate for non-real time high data rate traffic, and, CBRA is appropriate for near-real time low/medium data rate traffic. Thus, the proposed HMA scheme supports various types of traffic. As a CBRA scheme, our proposed random frequency hopping (RFH)-OFDMA scheme was presented. Simulation results show that the proposed HMA yields the best performance among various resource allocation schemes for uplink OFDMA systems.

Opportunistic Scheduling Schemes for Elastic Services in OFDMA Systems (OFDMA 시스템에서 Elastic 서비스를 위한 Opportunistic 스케줄링 기법)

  • Kwon, Jeong-Ahn;Lee, Jang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.76-83
    • /
    • 2009
  • In this paper, we provide opportunistic scheduling schemes for elastic services in OFDMA systems with fairness constraints for each user. We adopt the network utility maximization framework in which a utility function is defined for each user to represent its level of satisfaction to the service. Since we consider elastic services whose degree of satisfaction depends on its average data rate, we define the utility function of each user as a function of its average data rate. In addition, for fair resource allocation among users, we define fairness requirements of each user by using utility functions. We first formulate an optimization problem for each fairness requirement that aim at maximizing network utility, which is defined as the sum of utilities of users. We then develop an opportunistic scheduling scheme for each fairness requirement by solving the problem using a dual approach and a stochastic sub-gradient algorithm.

An Efficient Scheduling Algorithm for 3D-Traffic in OFDMA Systems (OFDMA 시스템에서 3D 트래픽의 효율적 전송을 위한 스케줄링 방안)

  • Kwon, Su-Jin;Chung, Young-Uk;Lee, Hyuk-Joon;Choi, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1104-1110
    • /
    • 2009
  • 3D A/V services are expected to be a representative service of next generation because it can give more realistic feeling by providing dimensions to the 2D images. In terms of transmission part of 3D A/V systems, however, it is difficult to provide these services on real-time in the wireless OFDMA networks because it has to send large amount of traffic. To address this, we proposed a novel scheduling algorithm which separates a 3D traffic into base layer and enhancement layer, and provides different priority to them. From simulation results, we can show that the proposed algorithm can improve QoS.

An Irregular Frequency Reuse Scheme for Cellular OFDMA Systems (셀룰러 OFDMA 시스템을 위한 불규칙적 주파수 재사용 방법)

  • Kim, Young-Serk;Ryu, Chul;Rim, Min-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.81-87
    • /
    • 2007
  • While conventional frequency reuse techniques for cellular communication systems divide frequency resources into multiple regions and each mobile is statically assigned to a certain frequency region, frequency reuse techniques for cellular OFDMA communication systems can be regarded as dynamic scheduling problems of finding best-fitted subcarriers for each packet transmission. Unlike conventional frequency reuse techniques allocating mutually exclusive frequency resources to adjacent cells, this paper proposes the use of a frequency reuse technique with irregular frequency allocation patterns assigned statically based on the cell numbers. This paper shows that the use of irregular frequency patterns can allow efficient interference avoidance and high data throughputs comparable to those with carefully planned frequency patterns.