• Title/Summary/Keyword: OFDM (orthogonal Frequency Division Multiplexing)

Search Result 815, Processing Time 0.037 seconds

A New Peak-Windowing Algorithm with Window-length Adaptation for PAPR Reduction of OFDM Systems (OFDM 시스템의 PAPR 저감을 위한 가변적인 윈도우 크기를 적용한 Peak Windowing 기법)

  • Lee, Sung-Eun;Bang, Keuk-Joon;Park, Myong-Hee;Lee, Young-Soo;Hong, Dae-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.185-188
    • /
    • 2005
  • This paper proposes a new peak-windowing algorithm with window-length adaptation for peak-to-average power reduction (PAPR) of orthogonal frequency division multiplexing (OFDM) systems. Conventional peak windowing algorithm has advantages, such as moderate system complexity with good spectral shape. However, adjacent peak signals within the length of window functions produce the distortion of signal amplitude since window functions might overap with each other. These undesired characteristics of conventional peak windowing algorithm result in the degradation of BER performance. The proposed algorithm outperforms the conventional one with the aid of window-length adaptation. Simulation results show the efficiency of the proposed algorithm under the environments of WiBro downlink systems.

  • PDF

Subcarrier and Power Allocation for Multiuser MIMO-OFDM Systems with Various Detectors

  • Mao, Jing;Chen, Chen;Bai, Lin;Xiang, Haige;Choi, Jinho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4738-4758
    • /
    • 2017
  • Resource allocation plays a crucial role in multiuser multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) systems to improve overall system performance. While previously proposed resource allocation algorithms are mainly designed from the point of view of the information-theoretic, we formulate the resource allocation problem as an average bit error rate (BER) minimization problem subject to a total power constraint when considering employing realistic MIMO detection techniques. Subsequently, we derive the optimal subcarrier and power allocation algorithms for three types of well-known MIMO detectors, including the maximum likelihood (ML) detector, linear detectors, and successive interference cancellation (SIC) detectors. To reduce the complexity, we also propose a two-step suboptimal algorithm that separates subcarrier and power allocation for each detector. We also analyze the diversity gain of the proposed suboptimal algorithms for various MIMO detectors. Simulation results confirm that the proposed suboptimal algorithm for each detector can achieve a comparable performance with the optimal allocation with a much lower complexity. Moreover, it is shown that the suboptimal algorithms perform better than the conventional algorithms that are known in the literature.

Iterative Channel Estimation for MIMO-OFDM System in Fast Time-Varying Channels

  • Yang, Lihua;Yang, Longxiang;Liang, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4240-4258
    • /
    • 2016
  • A practical iterative channel estimation technique is proposed for the multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system in the high-speed mobile environment, such as high speed railway scenario. In the iterative algorithm, the Kalman filter and data detection are jointed to estimate the time-varying channel, where the detection error is considered as part of the noise in the Kalman recursion in each iteration to reduce the effect of the detection error propagation. Moreover, the employed Kalman filter is from the canonical state space model, which does not include the parameters of the autoregressive (AR) model, so the proposed method does not need to estimate the parameters of AR model, whose accuracy affects the convergence speed. Simulation results show that the proposed method is robust to the fast time-varying channel, and it can obtain more gains compared with the available methods.

Performance Evaluation of an Improved Block Coding for PAPR Reduction (PAPR 저감을 위한 개선된 블록 코딩 방식의 성능 평가)

  • 이윤희;정기호;유흥균
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.889-897
    • /
    • 2002
  • In this paper, we propose an improved block coding scheme for PAPR reduction in the OFDM communication system. Unlike the conventional block coding scheme which uses one block encoder of subcarrier N, two block encoders of subcarrier N/2 is used for the proposed block coding scheme. This not only improves the coding gain, but enhances the spectral efficiency by twice due to the increment of code rate. PAPR Reduction performance is the same as the conventional block coding. When BER is $10^{-4}$, the proposed block coding scheme has coding gain of 0.5 dB than the conventional scheme.

Optimal Design of Piecewise Linear Companding Transforms for PAPR Reduction in OFDM Systems

  • Mazahir, Sana;Sheikh, Shahzad Amin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.200-220
    • /
    • 2016
  • Orthogonal frequency division multiplexing (OFDM) signals suffer from the problem of large peak-to-average power ratio (PAPR) which complicates the design of the analog front-end of the system. Companding is a well-known PAPR reduction technique that reduces the PAPR by transforming the signal amplitude using a deterministic function. In this paper, a novel piecewise linear companding transform is proposed. The design criteria for the proposed transform is developed by investigating the relationships between the compander and decompander's profile and parameters with the system's performance metrics. Using analysis and simulations, we relate the companding parameters with the bit error rate (BER), out-of-band interference (OBI), amount of companding noise, computational complexity and average power. Based on a set of criteria developed thereof, we formulate the design of the proposed transform. The main aim is to preserve the signal's attributes as much as possible for a predetermined amount of PAPR reduction. Simulations are carried out to evaluate and compare the proposed scheme with the existing companding transforms to demonstrate the enhancement in PAPR, BER and OBI performances.

Resource Allocation Algorithm Based on Simultaneous Wireless Information and Power Transfer for OFDM Relay Networks

  • Xie, Zhenwei;Zhu, Qi;Zhao, Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5943-5962
    • /
    • 2017
  • A resource allocation algorithm based on simultaneous wireless information and power transfer (SWIPT) to maximize the system throughput is proposed in orthogonal frequency division multiplexing (OFDM) relay networks. The algorithm formulates the problem under the peak power constraints of the source and each subcarrier (SC), and the energy causality constraint of the relay. With the given SC allocation of the source, we give and prove the optimal propositions of the formulated problem. Then, the formulated problem could be decomposed into two separate throughput maximization sub-problems by setting the total power to transfer energy. Finally, several SC allocation schemes are proposed, which are energy priority scheme, information priority scheme, balanced allocation scheme and exhaustive scheme. The simulation results reveal that the energy priority scheme can significantly reduce computational complexity and achieve approximate performance with the exhaustive scheme.

Transmit Scheme Study for OFDM Based Fixed Relay System with Hierarchical Modulation (직교주파수다중화변조 기반 계층변조 릴레이 시스템의 전송방식 연구)

  • Xu, Jian;Kang, Woo-Seok;Seo, Jong-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.598-603
    • /
    • 2008
  • Relay system is a promising technique for the high downlink throughput or coverage extension in the next generation wireless systems. In this paper, the transmit scheme for orthogonal frequency division multiplexing (OFDM) based relay system with hierarchical modulation is designed. Without using much power from the base station, the proposed scheme can guarantee the cell edge users to get high data rates as the inner cell users. In the simulation, the performance of proposed scheme was compared with the conventional one in which there is no hierarchical modulation. Numerical results show that the proposed scheme can save much power whether the unicast case or multicast case.

  • PDF

PAPR reduction and Pre-distortion techniques against Non-linear Distortion of Satellite WiBro

  • Shrestha, Robin;Seo, Myung-Hwan;Go, Gyeong-Wan;Lee, Byung-Seub
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.18-25
    • /
    • 2008
  • A major drawback of Orthogonal Frequency Division Multiplexing (OFDM) system is high peak-to-average power ratio (PAPR) of the transmitted signal which introduces inevitable non-linear distortion in the transmission due to the amplifier non-linear property. This causes both in-band distortion and out of band spectrum re-growth. A polynomial based pre-distortion is estimated using the non-linear and inverse non-linear polynomial achieved through the Least Square Error (LSE) method. A new technique of PAPR reduction called 'Phase Realignment' (PR) is proposed which has a optimal effect in improving the BER performance as well as considerable reduction in the PAPR. In this paper we used the PR method along with the 'Peak Clipping' (PC) method is used before the pre-distortion to remove the high peak present in the non constant amplitude of the OFDM signal responsible to drive the amplifier in near saturation region for better performance of the system.

  • PDF

An energy-efficiency approach for bidirectional amplified-and-forward relaying with asymmetric traffic in OFDM systems

  • Jia, Nianlong;Feng, Wenjiang;Zhong, Yuanchang;Kang, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4087-4102
    • /
    • 2014
  • Two-way relaying is an effective way of improving system spectral efficiency by making use of physical layer network coding. However, energy efficiency in OFDM-based bidirectional relaying with asymmetric traffic requirement has not been investigated. In this study, we focused on subcarrier transmission mode selection, bit loading, and power allocation in a multicarrier single amplified-and-forward relay system. In this scheme, each subcarrier can operate in two transmission modes: one-way relaying and two-way relaying. The problem is formulated as a mixed integer programming problem. We adopt a structural approximation optimization method that first decouples the original problem into two suboptimal problems with fixed subcarrier subsets and then finds the optimal subcarrier assignment subsets. Although the suboptimal problems are nonconvex, the results obtained for a single-tone system are used to transform them to convex problems. To find the optimal subcarrier assignment subsets, an iterative algorithm based on subcarrier ranking and matching is developed. Simulation results show that the proposed method can improve system performance compared with conventional methods. Some interesting insights are also obtained via simulation.

Coded Layered Space-Time Transmission with Signal Space Diversity in OFDM Systems (신호 공간 다이버시티 기법을 이용한 OFDM 기반의 부호화된 시공간 전송기법)

  • Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7C
    • /
    • pp.644-651
    • /
    • 2007
  • In multiple antenna systems, vertical Bell Labs Layered Space-Time (V-BLAST) systems enable very high throughput by nulling and cancelling at each layer detection. In this paper, we propose a V-BLAST system which combines with signal space diversity technique. The benefit of the signal space diversity is that we can obtain an additional gain without extra bandwidth and power expansion by applying inphase/quadrature interleaving and the constellation rotation. Through simulation results, it is shown that the performance of the proposed system is less than 0.5dB away from the ideal upper bound.