• Title/Summary/Keyword: OECD toolbox

Search Result 3, Processing Time 0.026 seconds

Prediction of Human Health and Ecotoxicity of Chemical Substances Using the OECD QSAR Application Toolbox (OECD QSAR Application Toolbox를 이용한 화학물질의 건강유해성 및 생태독성 예측)

  • Kim, Jungkon;Seo, Jung-Kwan;Kim, Taksoo;Kim, Hyun-Kyung;Park, Sanghee;Kim, Pil-Je
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.2
    • /
    • pp.130-137
    • /
    • 2013
  • Objectives: The OECD QSAR Application Toolbox was developed by the Organisation for Economic Cooperation and Development (OECD) to facilitate the practical use of QSAR approaches in regulatory contexts as well as to reduce the need for additional animal testing. In this study, human health and the ecotoxicity of chemicals were predicted by applying the OECD QSAR Application Toolbox and the results were compared with experimental data in order to evaluate the applicability of this program. Methods: Read-across, trend analysis, and QSAR of OECD QSAR Application Toolbox were used for the prediction of toxicity. Results: The toxicity prediction was conducted on 6,354 chemicals for which toxicity data have been produced on the six endpoints of skin sensitization, skin irritation, eye irritation, mutagenicity, and acute toxicities of fish and Daphnia. From the total of 6,354, we obtained prediction results for 1,621 chemicals (25.5%). Conclusions: The predicted properties of mutagenicity, skin sensitization, and acute aquatic toxicities were reasonably good when compared with experimental data, but other endpoints were not due to the limitation of applicable chemical groups.

Toxicity Prediction using Three Quantitative Structure-activity Relationship (QSAR) Programs (TOPKAT®, Derek®, OECD toolbox) (TOPKAT®, Derek®, OECD toolbox를 활용한 화학물질 독성 예측 연구)

  • Lee, Jin Wuk;Park, Seonyeong;Jang, Seok-Won;Lee, Sanggyu;Moon, Sanga;Kim, Hyunji;Kim, Pilje;Yu, Seung Do;Seong, Chang Ho
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.5
    • /
    • pp.457-464
    • /
    • 2019
  • Objectives: Quantitative structure-activity relationship (QSAR) is one of the effective alternatives to animal testing, but its credibility in terms of toxicity prediction has been questionable. Thus, this work aims to evaluate its predictive capacity and find ways of improving its credibility. Methods: Using $TOPKAT^{(R)}$, OECD toolbox, and $Derek^{(R)}$, all of which have been applied world-wide in the research, industrial, and regulatory fields, an analysis of prediction credibility markers including accuracy (A), sensitivity (S), specificity (SP), false negative (FN), and false positive (FP) was conducted. Results: The multi-application of QSARs elevated the precision credibility relative to individual applications of QSARs. Moreover, we found that the type of chemical structure affects the credibility of markers significantly. Conclusions: The credibility of individual QSAR is insufficient for both the prediction of chemical toxicity and regulation of hazardous chemicals. Thus, to increase the credibility, multi-QSAR application, and compensation of the prediction deviation by chemical structure are required.

Development of QSAR Model Based on the Key Molecular Descriptors Selection and Computational Toxicology for Prediction of Toxicity of PCBs (PCBs 독성 예측을 위한 주요 분자표현자 선택 기법 및 계산독성학 기반 QSAR 모델 개발)

  • Kim, Dongwoo;Lee, Seungchel;Kim, Minjeong;Lee, Eunji;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.621-629
    • /
    • 2016
  • Recently, the researches on quantitative structure activity relationship (QSAR) for describing toxicities or activities of chemicals based on chemical structural characteristics have been widely carried out in order to estimate the toxicity of chemicals in multiuse facilities. Because the toxicity of chemicals are explained by various kinds of molecular descriptors, an important step for QSAR model development is how to select significant molecular descriptors. This research proposes a statistical selection of significant molecular descriptors and a new QSAR model based on partial least square (PLS). The proposed QSAR model is applied to estimate the logarithm of partition coefficients (log P) of 130 polychlorinated biphenyls (PCBs) and lethal concentration ($LC_{50}$) of 14 PCBs, where the prediction accuracies of the proposed QSAR model are compared to a conventional QSAR model provided by OECD QSAR toolbox. For the selection of significant molecular descriptors that have high correlation with molecular descriptors and activity information of the chemicals of interest, correlation coefficient (r) and variable importance of projection (VIP) are applied and then PLS model of the selected molecular descriptors and activity information is used to predict toxicities and activity information of chemicals. In the prediction results of coefficient of regression ($R^2$) and prediction residual error sum of square (PRESS), the proposed QSAR model showed improved prediction performances of log P and $LC_{50}$ by 26% and 91% than the conventional QSAR model, respectively. The proposed QSAR method based on computational toxicology can improve the prediction performance of the toxicities and the activity information of chemicals, which can contribute to the health and environmental risk assessment of toxic chemicals.