• Title/Summary/Keyword: OECD/NEA

Search Result 81, Processing Time 0.022 seconds

Sensitivity Analysis of FDS Results for the Input Uncertainty of Fire Heat Release Rate (화재 열발생률 입력 불확실도에 대한 FDS 결과의 민감도 분석)

  • Cho, Jae-Ho;Hwang, Cheol-Hong;Kim, Joosung;Lee, Sangkyu
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • A sensitivity analysis of FDS(Fire Dynamics Simulator) results for the input uncertainty of heat release rate (Q) which might be the most influencing parameter to fire behaviors was performed. The calculated results were compared with experimental data obtained by the OECD/NEA PRISME project. The sensitivity of FDS results with the change in Q was also compared with the empirical correlations suggested in previous literature. As a result, the change in the specified Q led to the different dependence of major quantities such as temperature and species concentrations for the over- and under-ventilated fire conditions, respectively. It was also found that the sensitivity of major quantities to uncertain value of Q showed the significant difference in results obtained using the previous empirical correlations.

RELIABILITY ANALYSIS OF DIGITAL SYSTEMS IN A PROBABILISTIC RISK ANALYSIS FOR NUCLEAR POWER PLANTS

  • Authen, Stefan;Holmberg, Jan-Erik
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.471-482
    • /
    • 2012
  • To assess the risk of nuclear power plant operation and to determine the risk impact of digital systems, there is a need to quantitatively assess the reliability of the digital systems in a justifiable manner. The Probabilistic Risk Analysis (PRA) is a tool which can reveal shortcomings of the NPP design in general and PRA analysts have not had sufficient guiding principles in modelling particular digital components malfunctions. Currently digital I&C systems are mostly analyzed simply and conventionally in PRA, based on failure mode and effects analysis and fault tree modelling. More dynamic approaches are still in the trial stage and can be difficult to apply in full scale PRA-models. As basic events CPU failures, application software failures and common cause failures (CCF) between identical components are modelled.The primary goal is to model dependencies. However, it is not clear which failure modes or system parts CCF:s should be postulated for. A clear distinction can be made between the treatment of protection and control systems. There is a general consensus that protection systems shall be included in PRA, while control systems can be treated in a limited manner. OECD/NEA CSNI Working Group on Risk Assessment (WGRisk) has set up a task group, called DIGREL, to develop taxonomy of failure modes of digital components for the purposes of PRA. The taxonomy is aimed to be the basis of future modelling and quantification efforts. It will also help to define a structure for data collection and to review PRA studies.

Numerical analysis of two experiments related to thermal fatigue

  • Bieder, Ulrich;Errante, Paolo
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.675-691
    • /
    • 2017
  • Jets in cross flow are of fundamental industrial importance and play an important role in validating turbulence models. Two jet configurations related to thermal fatigue phenomena are investigated: ${\bullet}$ T-junction of circular tubes where a heated jet discharges into a cold main flow and ${\bullet}$ Rectangular jet marked by a scalar discharging into a main flow in a rectangular channel. The T-junction configuration is a classical test case for thermal fatigue phenomena. The Vattenfall T-junction experiment was already subject of an OECD/NEA benchmark. A LES modelling and calculation strategy is developed and validated on this data. The rectangular-jet configuration is important for basic physical understanding and modelling and has been analyzed experimentally at CEA. The experimental work was focused on turbulent mixing between a slightly heated rectangular jet which is injected perpendicularly into the cold main flow of a rectangular channel. These experiments are analyzed for the first time with LES. The overall results show a good agreement between the experimental data and the CFD calculation. Mean values of velocity and temperature are well captured by both RANS calculation and LES. The range of critical frequencies and their amplitudes, however, are only captured by LES.

The nuclear fuel cycle code ANICCA: Verification and a case study for the phase out of Belgian nuclear power with minor actinide transmutation

  • Rodriguez, I. Merino;Hernandez-Solis, A.;Messaoudi, N.;Eynde, G. Van den
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2274-2284
    • /
    • 2020
  • The Nuclear Fuel Cycle Code "ANICCA" has been developed by SCK•CEN to answer particular questions about the Belgian nuclear fleet. However, the wide range of capabilities of the code make it also useful for international or regional studies that include advanced technologies and strategies of cycle. This paper shows the main features of the code and the facilities that can be simulated. Additionally, a comparison between several codes and ANICCA has also been made to verify the performance of the code by means of a simulation proposed in the last NEA (OECD) Benchmark Study. Finally, a case study of the Belgian nuclear fuel cycle phase out has been carried out to show the possible impact of the transmutation of the minor actinides on the nuclear waste by the use of an Accelerator Driven System also known as ADS. Results show that ANICCA accomplishes its main purpose of simulating the scenarios giving similar outcomes to other codes. Regarding the case study, results show a reduction of more than 60% of minor actinides in the Belgian nuclear cycle when using an ADS, reducing significantly the radiotoxicity and decay heat of the high-level waste and facilitating its management.

COSMOS : A Computer Code for the Analysis of LWR $UO_2$ and MOX Fuel Rod

  • Koo, Yang-Hyun;Lee, Byung-Ho;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.541-554
    • /
    • 1998
  • A computer code COSMOS has been developed based on the CARO-D5 for the thermal analysis of LWR UO$_2$ and MOX fuel rod under steady-state and transient operating conditions. The main purpose of the COSMOS, which considers high turnup characteristics such as thermal conductivity degradation with turnup and rim formation at the outer part of fuel pellet, is to calculate temperature profile across fuel pellet and fission gas release up to high burnup. A new mechanistic fission gas release model developed based on physical processes has been incorporated into the code. In addition, the features of MOX fuel such as change in themo-mechanical properties and the effect of microscopic heterogeneity on fission gas release have been also taken into account so that it can be applied to MOX fuel. Another important feature of the COSMOS is that it can analyze fuel segment refabricated from base irradiated fuel rods in commercial reactors. This feature makes it possible to analyze database obtained from international projects such as the MALDEN and RISO, many of which were collected from refabricated fuel segments. The capacity of the COSMOS has been tested with some number of experimental results obtained from the HALDEN, RISO and FIGARO programs. Comparison with the measured data indicates that, although the COSMOS gives reasonable agreement, the current models need to be improved. This work is being performed using database available from the OECD/NEA.

  • PDF

Unsteady Single-Phase Natural Circulation Flow Mixing Prediction Using CATHARE Three-Dimensional Capabilities

  • Salah, Anis Bousbia;Vlassenbroeck, Jacques
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.466-475
    • /
    • 2017
  • Coolant mixing under natural circulation flow regime constitutes a key parameter that may play a role in the course of an accidental transient in a nuclear pressurized water reactor. This issue has motivated some experimental investigations carried out within the OECD/NEA PKL projects. The aim was to assess the coolant mixing phenomenon in the reactor pressure vessel downcomer and the core lower plenum under several asymmetric steady and unsteady flow conditions, and to provide experimental data for code validations. Former studies addressed the mixing phenomenon using, on the one hand, one-dimensional computational approaches with cross flows that are not fully validated under transient conditions and, on the other hand, expensive computational fluid dynamic tools that are not always justified for large-scale macroscopic phenomena. In the current framework, an unsteady coolant mixing experiment carried out in the Rossendorf coolant mixing test facility is simulated using the three-dimensional porous media capabilities of the thermal-hydraulic system CATHARE code. The current study allows highlighting the current capabilities of these codes and their suitability for reproducing the main phenomena occurring during asymmetric transient natural circulation mixing conditions.

ROSA/LSTF Test and RELAP5 Analyses on PWR Cold Leg Small-Break LOCA with Accident Management Measure and PKL Counterpart Test

  • Takeda, Takeshi;Ohtsu, Iwao
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.928-940
    • /
    • 2017
  • An experiment using the $Prim{\ddot{a}}rkreisl{\ddot{a}}ufe$ Versuchsanlage (PKL) was performed for the OECD/NEA PKL-3 Project as a counterpart to a previous test with the large-scale test facility (LSTF) on a cold leg smallbreak loss-of-coolant accident with an accident management (AM) measure in a pressurized water reactor. Concerning the AM measure, the rate of steam generator (SG) secondary-side depressurization was controlled to achieve a primary depressurization rate of 200 K/h as a common test condition; however, the onset timings of the SG depressurization were different from each other. In both tests, rapid recovery started in the core collapsed liquid level after loop seal clearing, which caused whole core quench. Some discrepancies appeared between the LSTF and PKL test results for the core collapsed liquid level, the cladding surface temperature, and the primary pressure. The RELAP5/MOD3.3 code predicted the overall trends of the major thermal-hydraulic responses observed in the LSTF test well, and indicated a remaining problem in the prediction of primary coolant distribution. Results of uncertainty analysis for the LSTF test clarified the influences of the combination of multiple uncertain parameters on peak cladding temperature within the defined uncertain ranges.

Use of Monte Carlo code MCS for multigroup cross section generation for fast reactor analysis

  • Nguyen, Tung Dong Cao;Lee, Hyunsuk;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2788-2802
    • /
    • 2021
  • Multigroup cross section (MG XS) generation by the UNIST in-house Monte Carlo (MC) code MCS for fast reactor analysis using nodal diffusion codes is reported. The feasibility of the approach is quantified for two sodium fast reactors (SFRs) specified in the OECD/NEA SFR benchmark: a 1000 MWth metal-fueled SFR (MET-1000) and a 3600 MWth oxide-fueled SFR (MOX-3600). The accuracy of a few-group XSs generated by MCS is verified using another MC code, Serpent 2. The neutronic steady-state whole-core problem is analyzed using MCS/RAST-K with a 24-group XS set. Various core parameters of interest (core keff, power profiles, and reactivity feedback coefficients) are obtained using both MCS/RAST-K and MCS. A code-to-code comparison indicates excellent agreement between the nodal diffusion solution and stochastic solution; the error in the core keff is less than 110 pcm, the root-mean-square error of the power profiles is within 1.0%, and the error of the reactivity feedback coefficients is within three standard deviations. Furthermore, using the super-homogenization-corrected XSs improves the prediction accuracy of the control rod worth and power profiles with all rods in. Therefore, the results demonstrate that employing the MCS MG XSs for the nodal diffusion code is feasible for high-fidelity analyses of fast reactors.

Impact of molybdenum cross sections on FHR analysis

  • Ramey, Kyle M.;Margulis, Marat;Read, Nathaniel;Shwageraus, Eugene;Petrovic, Bojan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.817-825
    • /
    • 2022
  • A recent benchmarking effort, under the auspices of the Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA), has been made to evaluate the current state of modeling and simulation tools available to model fluoride salt-cooled high temperature reactors (FHRs). The FHR benchmarking effort considered in this work consists of several cases evaluating the neutronic parameters of a 2D prismatic FHR fuel assembly model using the participants' choice of simulation tools. Benchmark participants blindly submitted results for comparison with overall good agreement, except for some which significantly differed on cases utilizing a molybdenum-bearing control rod. Participants utilizing more recently updated explicit isotopic cross sections had consistent results, whereas those using elemental molybdenum cross sections observed reactivity differences on the order of thousands of pcm relative to their peers. Through a series of supporting tests, the authors attribute the differences as being nuclear data driven from using older legacy elemental molybdenum cross sections. Quantitative analysis is conducted on the control rod to identify spectral, reaction rate, and cross section phenomena responsible for the observed differences. Results confirm the observed differences are attributable to the use of elemental cross sections which overestimate the reaction rates in strong resonance channels.

Spectroscopic Characterization of Aqueous and Colloidal Am(III)-CO3 Complexes for Monitoring Species Evolution

  • Hee-Kyung Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.371-382
    • /
    • 2022
  • Carbonates are inorganic ligands that are abundant in natural groundwater. They strongly influence radionuclide mobility by forming strong complexes, thereby increasing solubility and reducing soil absorption rates. We characterized the spectroscopic properties of Am(III)-carbonate species using UV-Vis absorption and time-resolved laser-induced fluorescence spectroscopy. The deconvoluted absorption spectra of aqueous Am(CO3)2- and Am(CO3)33- species were identified at red-shifted positions with lower molar absorption coefficients compared to the absorption spectrum of aqua Am3+. The luminescence spectrum of Am(CO3)33- was red-shifted from 688 nm for Am3+ to 695 nm with enhanced intensity and an extended lifetime. Colloidal Am(III)-carbonate compounds exhibited absorption at approximately 506 nm but had non-luminescent properties. Slow formation of colloidal particles was monitored based on the absorption spectral changes over the sample aging time. The experimental results showed that the solubility of Am(III) in carbonate solutions was higher than the predicted values from the thermodynamic constants in OECD-NEA reviews. These results emphasize the importance of kinetic parameters as well as thermodynamic constants to predict radionuclide migration. The identified spectroscopic properties of Am(III)-carbonate species enable monitoring time-dependent species evolution in addition to determining the thermodynamics of Am(III) in carbonate systems.