• Title/Summary/Keyword: ODS-alloy

Search Result 38, Processing Time 0.026 seconds

MICROSTRUCTURE AND MECHANICAL STRENGTH OF SURFACE ODS TREATED ZIRCALOY-4 SHEET USING LASER BEAM SCANNING

  • Kim, Hyun-Gil;Kim, Il-Hyun;Jung, Yang-Il;Park, Dong-Jun;Park, Jeong-Yong;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.4
    • /
    • pp.521-528
    • /
    • 2014
  • The surface modification of engineering materials by laser beam scanning (LBS) allows the improvement of properties in terms of reduced wear, increased corrosion resistance, and better strength. In this study, the laser beam scan method was applied to produce an oxide dispersion strengthened (ODS) structure on a zirconium metal surface. A recrystallized Zircaloy-4 alloy sheet with a thickness of 2 mm, and $Y_2O_3$ particles of $10{\mu}m$ were selected for ODS treatment using LBS. Through the LBS method, the $Y_2O_3$ particles were dispersed in the Zircaloy-4 sheet surface at a thickness of 0.4 mm, which was about 20% when compared to the initial sheet thickness. The mean size of the dispersive particles was 20 nm, and the yield strength of the ODS treated plate at $500^{\circ}C$ was increased more than 65 % when compared to the initial state. This strength increase was caused by dispersive $Y_2O_3$ particles in the matrix and the martensite transformation of Zircaloy-4 matrix by the LBS.

Friction Welding of MA754 ODS Alloy Produced by Mechanical Alloying (기계적 합금법으로 제조된 MA754 산화물 분산강화 합금의 마찰압접에 관한 연구)

  • 강지훈
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.198-207
    • /
    • 1994
  • In order to find an optimal friction-welding condition for Ni-base ODS alloy (MA 754) produced by mechanical alloying, joint experiments were performed with various conditions of friction pressures (50~500 MPa), friction times (1~5 sec) and upset pressures (50~600 MPa). The optimal friction pressure and upset pressure must be above 400 MPa and 500 MPa, respectively, which are determined by tensile strengths and fracture features of as-welded joints. A maximum stress설h of 975 MPa could be obtained under these pressure conditions at friction time of 2 sec. Microstructural features of bonded interface by optical microscope and SEM revealed that the interface regions of all specimens are consisted with three distinct regions and defects such as voids, cracks and wavy interfaces exist in the joints produced under not-optimized conditions. EDS results showed that these defects include oxides composed with elements of Al, Y and Ti. The hardness on the bonded interface was higher than in the base metal region. Specimens fractured in bonded interface region had lower strength values compared to those fractured in base metal region. Surfaces of the former showed a typical intergranular fracture.

  • PDF

Development of Fe-12%Cr Mechanical-Alloyed Nano-Sized ODS Heat-Resistant Ferritic Alloys

  • 김익수;최병영
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.265-265
    • /
    • 1999
  • The development of mechanical alloying (MA)-oxide dispersion strengthened (ODS) heat-resistant ferritic alloys of Fe-12%Cr with W, Ti and Y₂O₃additions were carried out. Fe-12%Cr alloys with 3%W, 0.4%Ti and 0.25% Y₂O₃additions showed a much finer and more uniform dispersion of oxide particles among the alloy system studied. Nano-sized oxides dispersed in the alloys suppress the grain growth during annealing at a high temperature and resulted in the remarkable improvement of creep strength. The oxide phase was identified as a complex oxide type of Y-Ti-O.

Mechanical Properties of ODS Fe Alloys Produced by Mechano-Chemical Cryogenic Milling (극저온 기계화학적 밀링(Mechano-Chemical Milling)에 의해 제조된 ODS Fe 합금의 기계적 특성)

  • Hahn, Sung-In;Hong, Young-Hwan;Hwang, Seung-Joon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.3
    • /
    • pp.138-145
    • /
    • 2012
  • An ${\alpha}$-Ferrite (Fe) powder dispersed with 4 vol.% of $Al_2O_3$ was successfully produced by a simple miling at 210 K with a mixture of $Fe_2O_3$, Fe and Al ingredient powders, followed by 2 step high temperature consolidation: Hot Pressing (HP) at 1323 K and then Hot Isostatic Pressing at 1423 K. The microstructure of the consolidated material was characterized by standard metallographic techniques such as XRD (X-ray Diffraction), TEM and STEM-EDS. The results of STEM-EDS analysis showed that the HIPed materials comprised a mixture of pure Fe matrix with a grain size of ~20 nm and $Al_2O_3$ with a bimodal size distribution of extremely fine (~5 nm) and medium size dispersoids (~20 nm). The mechanical properties of the consolidated materials were characterized by compressive test and micro Vickers hardness test at room temperature. The results showed that the yield strength of the ODS (Oxide Dispersion Strengthened) Fe alloy are as much as $674{\pm}39$ MPa and the improvement of the yield strength is attributed to the presence of the fine $Al_2O_3$ dispersoid.

Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes

  • Jung, Yang-Il;Park, Dong-Jun;Park, Jung-Hwan;Kim, Hyun-Gil;Yang, Jae-Ho;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.218-222
    • /
    • 2018
  • An oxide-dispersion-strengthened (ODS) layer was formed on Zircaloy-4 tubes by a laser beam scanning process to increase mechanical strength. Laser beam was used to scan the yttrium oxide ($Y_2O_3$)-coated Zircaloy-4 tube to induce the penetration of $Y_2O_3$ particles into Zircaloy-4. Laser surface treatment resulted in the formation of an ODS layer as well as microstructural phase transformation at the surface of the tube. The mechanical strength of Zircaloy-4 increased with the formation of the ODS layer. The ring-tensile strength of Zircaloy-4 increased from 790 to 870 MPa at room temperature, from 500 to 575 MPa at $380^{\circ}C$, and from 385 to 470 MPa at $500^{\circ}C$. Strengthening became more effective as the test temperature increased. It was noted that brittle fracture occurred at room temperature, which was not observed at elevated temperatures. Resistance to dynamic high-temperature bursting improved. The burst temperature increased from 760 to $830^{\circ}C$ at a heating rate of $5^{\circ}C/s$ and internal pressure of 8.3 MPa. The burst opening was also smaller than those in fresh Zircaloy-4 tubes. This method is expected to enhance the safety of Zr fuel cladding tubes owing to the improvement of their mechanical properties.

Experimental Verification of the Decomposition of Y2O3 in Fe-Based ODS Alloys During Mechanical Alloying Process

  • Byun, Jong Min;Park, Chun Woong;Kim, Young Do
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1309-1314
    • /
    • 2018
  • In this study, we investigated the state of $Y_2O_3$, as a major additive element in Fe-based ODS alloys, during mechanical alloying (MA) processes by thermodynamic approaches and experimental verification. For this purpose, we introduced $Ti_2O_3$ that formed different reaction products depending on the state of $Y_2O_3$ into the Fe-based ODS alloys. In addition, the reaction products of $Ti_2O_3$, Y, and $Y_2O_3$ powders were predicted approximately based on their formation enthalpy. The experimental results relating to the formation of Y-based complex oxides revealed that $YTiO_3$ and $Y_2Ti_2O_7$ were formed when $Ti_2O_3$ reacted with Y; in contrast, only $Y_2Ti_2O_7$ was detected during the reaction between $Ti_2O_3$ and $Y_2O_3$. In the alloy of $Fe-Cr-Y_2O_3$ with $Ti_2O_3$, $YTiO_3$ (formed by the reaction of $Ti_2O_3$ with Y) was detected after the MA and heat treatment processes were complete, even though $Y_2O_3$ was present in the system. Using these results, it was proved that $Y_2O_3$ decomposed into monoatomic Y and O during the MA process.