• 제목/요약/키워드: ODS nanocrystalline

검색결과 3건 처리시간 0.016초

MSR (Mechanically induced Self-sustaining Reaction)이 억제된 반응성 밀링에 의해 제조된 분산강화 페라이트의 미세조직과 기계적 특성 (Microstructure and Mechanical Properties of ODS Ferrite Produced by Reactive Milling for the MSR Suppression)

  • 황승준
    • 열처리공학회지
    • /
    • 제26권6호
    • /
    • pp.279-287
    • /
    • 2013
  • Oxide Dispersion Strengthened (ODS) Fe with $Al_2O_3$ dispersoid was successfully produced by reactive milling with a mixture of Fe, $Fe_3O_4$ (Magnetite), $Fe_2O_3$ (Hematite) and Al reactants at cryogenic temperature. The milled powders were consolidated by Vacuum Hot Press (HP) at 1323 K, and the consolidated materials were characterized by Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive Spectroscopy (EDS); the yield strength and the hardness of the consolidated materials were determined by compressive test and Vickers hardness test at room temperature. The grain size of the materials was estimated by X-ray Diffraction technique using the scherrer's formula. The TEM observations showed that the microstructure was comprised with a mixture of nanocrystalline Fe matrix and $Al_2O_3$ nano-dispersoids with a bimodal size distribution; the 0.2% off-set yield strength of the materials was as high as $758{\pm}29$ MPa and the Vickers hardness was $358{\pm}2$. The effect of the cryogenic milling and addition of extra Fe powder was discussed on the suppression of MSR (Mechanically induced Self-sustaining Reaction) for the desired microstructural evolution of ODS alloys.

극저온 기계화학적 밀링(Mechano-Chemical Milling)에 의해 제조된 ODS Fe 합금의 기계적 특성 (Mechanical Properties of ODS Fe Alloys Produced by Mechano-Chemical Cryogenic Milling)

  • 한성인;홍영환;황승준
    • 열처리공학회지
    • /
    • 제25권3호
    • /
    • pp.138-145
    • /
    • 2012
  • An ${\alpha}$-Ferrite (Fe) powder dispersed with 4 vol.% of $Al_2O_3$ was successfully produced by a simple miling at 210 K with a mixture of $Fe_2O_3$, Fe and Al ingredient powders, followed by 2 step high temperature consolidation: Hot Pressing (HP) at 1323 K and then Hot Isostatic Pressing at 1423 K. The microstructure of the consolidated material was characterized by standard metallographic techniques such as XRD (X-ray Diffraction), TEM and STEM-EDS. The results of STEM-EDS analysis showed that the HIPed materials comprised a mixture of pure Fe matrix with a grain size of ~20 nm and $Al_2O_3$ with a bimodal size distribution of extremely fine (~5 nm) and medium size dispersoids (~20 nm). The mechanical properties of the consolidated materials were characterized by compressive test and micro Vickers hardness test at room temperature. The results showed that the yield strength of the ODS (Oxide Dispersion Strengthened) Fe alloy are as much as $674{\pm}39$ MPa and the improvement of the yield strength is attributed to the presence of the fine $Al_2O_3$ dispersoid.

반응성 밀링에 의해 제조된 Cr2O3 분산강화형 Cu 합금의 미세조직과 입자조대화 (The Microstructure and Coarsening Behavior of Cr2O3 Dispersoid in ODS Cu Produced by Reactive Milling)

  • 박은범;황승준
    • 열처리공학회지
    • /
    • 제31권4호
    • /
    • pp.171-179
    • /
    • 2018
  • Copper powder dispersed with 4 vol.% of $Cr_2O_3$ was successfully produced by a simple milling at 210 K with a mixture of $Cu_2O$, Cu and Cr elemental powders, followed by Hot Pressing (HP) at 1123 K and 50 MPa for 2h to consolidate the milled powder. The microstructure of the HPed material was characterized by standard metallographic techniques such as XRD (X-ray Diffraction), TEM and STEM-EDS. The results of STEMEDS analysis showed that the HPed materials comprised a mixture of nanocrystalline Cu matrix and $Cr_2O_3$ dispersoid with a homogeneous bimodal size distribution. The mechanical properties of the HPed materials were characterized by micro Vickers hardness test at room temperature. The thermodynamic considerations on the heat of formation, the incubation time to ignite MSR (Mechanically induced Self-sustaining Reaction), and the adiabatic temperature for the heat of displacement reaction between the oxide-metal are made for the delayed formation of $Cr_2O_3$ dispersoid in terms of MSR suppression. The results of TEM observation and hardness test indicated that the relatively large dispersoids in the HPed materials are attributed to the significant coarsening for the high temperature consolidation; this leads to the low Vickers hardness value. Based on the thermodynamic calculation for the operating processes with a limited number of parameters, the formation kinetics and coarsening of the $Cr_2O_3$ dispersoid are discussed.