• Title/Summary/Keyword: OCV

Search Result 143, Processing Time 0.024 seconds

Degradation of Membrane With Pinholes in PEMFC (고분자 전해질 연료전지에서 Pinhole 있는 막의 열화)

  • Kim, Tae-Hee;Lee, Ho;Lim, Tae-Won;Park, Kwon-Pil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.2
    • /
    • pp.103-110
    • /
    • 2008
  • The most failure mode of PEM fuel cell is gas crossover caused by pinhole formation in MEAs. The degradation phenomena of MEA with pinholes were evaluated in various accelerated operation condition, such as OCV, low humidity and high partial pressure of oxygen. The performances of MEA with pinholes were almost same before and after normal 144 hours operation($70^{\circ}C$, $640mA/cm^2$, 65%RH $H_2/air$). The results of accelerated operation showed that OCV and low humidity condition more deteriorated MEA than gas crossover owing to pinholes. When oxygen was used as cathode gas, the pinholes of MEA were enlarged due to heat of combustion reaction on Pt catalyst of electrodes. This combustion reaction occurred at pinholes near gas inlet and resulted in local MEA failure.

Validation of the Nursing Outcomes Classification on Cerebrovascular Patients (뇌혈관질환자에게 적용가능한 간호결과 분류체계의 타당성 검증)

  • Kim, Young-Hwa;So, Hyang-Sook;Lee, Eun-Joo;Ko, Eun
    • Korean Journal of Adult Nursing
    • /
    • v.20 no.3
    • /
    • pp.489-499
    • /
    • 2008
  • Purpose: The purpose of this study was to assess the importance and contribution of 9 nursing outcomes and their indicators that could be applied to cerebrovascular patients. Methods: Data were collected from 175 neurosurgical nurses working at two university affiliated hospitals and five secondary hospitals located in Gwang-ju. The Fehring method was used to estimate outcome content validity(OCV) and outcome sensitivity validity(OSV) of nursing outcomes and their indicators. Stepwise regression was used to evaluate relationship between outcome and its indicators. Results: The core outcomes identified by the OCV were Tissue Perfusion: Cerebral, Nutritional Status, Neurological Status, and Wound Healing: Primary Intention, whereas highly supportive outcomes identified by the OSV were Oral Health, Self-Care: ADL, and Nutritional Status. All the critical indicators selected for Fehring method were not included in stepwise regression model. By stepwise regression analysis, the indicators explained outcomes from 19% to 52% in importance and from 21% to 45% in contribution. Conclusion: This study identified core and supportive outcomes and their indicators which could be useful to assess the physical status of cerebrovascular patients. Further research is needed for the revision and development of nursing outcomes and their indicators at neurological nursing area.

  • PDF

Pattern Partitioning and Decision Method in the Semiconductor Chip Marking Inspection (반도체 부품 마크 미세 결함 검사를 위한 패턴 영역 분할 및 인식 방법)

  • Zhang, Yuting;Lee, Jung-Seob;Joo, Hyo-Nam;Kim, Joon-Seek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.913-917
    • /
    • 2010
  • To inspect the defects of printed markings on the surface of IC package, the OCV (Optical Character Verification) method based on NCC (Normalized Correlation Coefficient) pattern matching is widely used. In order to detect the micro pattern defects appearing on the small portion of the markings, a Partitioned NCC pattern matching method was proposed to overcome the limitation of the NCC pattern matching. In this method, the reference pattern is first partitioned into several blocks and the NCC values are computed and are combined in these small partitioned blocks, rather than just using the NCC value for the whole reference pattern. In this paper, we proposed a method to decide the proper number of partition blocks and a method to inspect and combine the NCC values of each partitioned block to identify the defective markings.

Electrical Modeling of Lithium-Polymer Battery (리튬폴리머 전지의 전기적 모델링)

  • Im, Jae-Kwan;Lim, Deok-Young;Windarko, Novie Ayub;Choi, Jae-Ho;Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.199-207
    • /
    • 2011
  • Electrical modeling of lithium-polymer battery is very important for electric energy supply system. In this paper, electric equivalent circuit of lithium-polymer battery is proposed to simulate its dynamic characteristics. Maccor 8500 charge/discharge system is used to obtain the experimental data of lithium-polymer battery. Model parameters are calculated by using Matlab. This paper defines a R-C model for charging/discharging of battery and polynomial functions are used for OCV (Open Circuit Voltage) modeling. The proposed model is simulated with PSiM and then compared the simulation results with the experimental results to verify the validity of the proposed model.

Development and Performance of BMS Modules for Urban Electric Car Using Life Prediction Method (수명 예측 기법을 이용한 도시형 전기자동차 BMS 모듈 개발 및 차량 성능에 관한 실험 연구)

  • Lee, Jungho;Park, Chanhee;Yang, Gyuneui;Shim, Gangkoo;Bae, Chulmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.147-154
    • /
    • 2013
  • This study reports on the development and investigation of a BMS module using a new algorithm on the driving performance and battery life of electric vehicles. Here, the initial SOC was calculated using an open circuit voltage (OCV) method and a current integral method was later applied to the BMS module. We verified the performance of the BMS module by comparing both the results of the in-vehicle test and the BMS simulator test. Our verification test showed good agreement between the results of experiments and simulation with a small error of ${\pm}0.8%$. Here, we confirmed that the present, newly-developed BMS module not only can predict the battery life but can also monitor SOC, pack voltage, and current temperature.

Single Cell Stacked Planar Type SOFC Assembled Using a Ag-Current Collector (Ag 집전체를 적용한 평판형 SOFC 단전지)

  • Cho, Nam-Ung;Hwang, Soon-Cheol;Lee, In-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.720-726
    • /
    • 2007
  • Current collectors of SOFC play a significant role on the performance of power generation. In this study a single cell stacked SOFC was assembled using Ag-mesh as a cathode current collector, and evaluated its performance. No gas leakages of the single cell stack occurred in the tests of gas detection and OCV measurement. The OCV and initial power of the stack were 1.09V and $0.45W/cm^2$, respectively, under the flow rates of air at 2,500 cc/min and $H_2$ at 1,000 cc/min at the test temperature of $750^{\circ}C$. A degradation rate of 44.0% was measured during the prolonged time of 307 h. The relatively low durability of the tested single cell stack was found to be the evaporation of Ag-mesh at the current corrector.

Improvement of Open Circuit Voltage (OCV) depending on Thickness of GDC Electrolyte of LT-SOFCs (저온형 SOFC용 GDC 전해질 두께에 따른 Open Circuit Voltage 향상)

  • Ko, Hyun-Jun;Lee, Jong-Jin;Hyun, Sang-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.195-198
    • /
    • 2010
  • It has been considered to apply GDC ($Gd_{0.1}Ce_{0.9}O_{1-X}$) for low-temperature SOFC electrolytes because it has higher ionic conductivity than YSZ at low temperature. However, open circuit voltage with using GDC ($Gd_{0.1}Ce_{0.9}O_{1-X}$) electrolyte in SOFCs, becomes lower than using YSZ (8 mol% Yttria stabilized Zirconia) electrolyte because GDC has electronic conductivity. In this work, the effect of changing GDC electrolyte thickness on the open circuit voltage has been investigated. Ni-GDC anode-supported unit cells were fabricated as follows. Mixed NiO-GDC powders were pressed and pre-sintered at $1200^{\circ}C$. And then, GDC electrolyte material was dip-coated on the anode and sintered at $1400^{\circ}C$. Finally the LSCF-GDC cathode material was screen-printed on the electrolyte and sintered at $1000^{\circ}C$. Electrolyte thickness was controlled by the number of dip-coating times. Open circuit voltage was measured depending on electrolyte thickness at $650^{\circ}C$ and found that the thicker GDC electrolyte was, the better OCV was.

Systematic Approach of Internal Parameters for Equivalent Electrical-Circuit Modeling(EECM) of a Li4Ti5O12(LTO) cell (Li4Ti5O12(LTO) 배터리 등가회로 모델링을 위한 내부 파라미터 체계적 해석)

  • Lee, Pyeong-Yeon;Yoon, Chang-O;Park, Jin-Hyeong;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.174-181
    • /
    • 2018
  • This study introduces a systematic approach to selecting the internal parameters applied to the equivalent electrical-circuit model (EECM) of a lithium titanium oxide ($Li_4Ti_5O_{12}$; LTO) rechargeable cell. Based on the dynamic characteristic of the cell, a simplified EECM consisting of an open-circuit voltage (OCV), an ohmic resistance, and an RC ladder is fabricated. To select the internal parameters of a simplified EECM, experiments on discharge capacity, OCV, and discharge/charge resistances are performed using hybrid pulse power characterization and direct current internal resistance (DCIR) measurements over the full state-of-charge (SOC) range. The experimental results of the LTO rechargeable cell highlight the importance of correct selection of internal parameters that can reduce EECM errors. This study clearly provides experimental procedures, internal parameters results, and EECM guidelines for adaptive control-based SOC estimation for LTO rechargeable cells.

Estimating the State-of-Charge of Lithium-Ion Batteries Using an H-Infinity Observer with Consideration of the Hysteresis Characteristic

  • Xie, Jiale;Ma, Jiachen;Sun, Yude;Li, Zonglin
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.643-653
    • /
    • 2016
  • The conventional methods used to evaluate battery state-of-charge (SOC) cannot accommodate the chemistry nonlinearities, measurement inaccuracies and parameter perturbations involved in estimation systems. In this paper, an impedance-based equivalent circuit model has been constructed with respect to a LiFePO4 battery by approximating the electrochemical impedance spectrum (EIS) with RC circuits. The efficiencies of approximating the EIS with RC networks in different series-parallel forms are first discussed. Additionally, the typical hysteresis characteristic is modeled through an empirical approach. Subsequently, a methodology incorporating an H-infinity observer designated for open-circuit voltage (OCV) observation and a hysteresis model developed for OCV-SOC mapping is proposed. Thereafter, evaluation experiments under FUDS and UDDS test cycles are undertaken with varying temperatures and different current-sense bias. Experimental comparisons, in comparison with the EKF based method, indicate that the proposed SOC estimator is more effective and robust. Moreover, test results on a group of Li-ion batteries, from different manufacturers and of different chemistries, show that the proposed method has high generalization capability for all the three types of Li-ion batteries.

Fabrication of Co-Planar Type Single Chamber SOFC with Patterned Electrodes (패턴된 전극을 가진 표면 전도형 단실형 고체산화물 연료전지의 제조)

  • Ahn, Sung-Jin;Kim, Yong-Bum;Moon, Joo-Ho;Lee, Jong-Ho;Kim, Joo-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.798-804
    • /
    • 2006
  • Co-planar type single chamber solid oxide fuel cell with patterned electrode on a surface of electrolyte has been fabricated by robo-dispensing method and microfluidic lithography. The cells were composed of NiO-GDC-Pd or NiO-SDC cermet anode, $(La_{0.7}Sr_{0.3})_{0.95}MnO_3$ cathode, and yttria stablized zirconia electrolyte. The cell performance at $900^{\circ}C$ was investigated as a function of electrode geometries, such as anode-to-cathode distance, numbers of electrode pairs. Relationship between OCV and I-V characteristics at the optimized operation condition was also studied by DC source meter under the mixed gas condition of methane, air, and nitrogen. An increase of anode-facing-cathode area leads to lower OCV due to intermixing between product gases of anode and cathode, which in turn decreases the oxygen partial pressure difference.