• 제목/요약/키워드: OBIA

검색결과 7건 처리시간 0.021초

무인항공기 및 인공지능을 활용한 도시지역 토지피복 분류 기법의 공간적 재현성 평가 (Spatial Replicability Assessment of Land Cover Classification Using Unmanned Aerial Vehicle and Artificial Intelligence in Urban Area)

  • 박건웅;송봉근;박경훈;이흥규
    • 한국지리정보학회지
    • /
    • 제25권4호
    • /
    • pp.63-80
    • /
    • 2022
  • 현실의 공간을 가상의 공간으로 구현하여 문제를 분석하고 예측하는 기술이 개발되면서, 복잡한 도시 내의 정밀한 공간정보를 취득하는 것이 중요해지고 있다. 본 연구는 복잡한 경관을 가진 도시지역을 대상으로 무인항공기를 통해 영상을 취득하고 고해상도 영상에 적합한 영상분류 기법인 객체기반 영상분석 기법과 의미론적 분할 기법을 적용하여 토지피복 분류를 수행하였다. 또한, 동일시기에 수집된 영상을 바탕으로 인공지능이 학습하지 않은 지역에 대해 각 인공지능 모형의 토지피복 분류 재현성을 확인하고자 하였다. 학습 지역을 대상으로 인공지능 모형을 학습하였을 때, 토지피복 분류 정확도가 OBIA-RF는 89.3%, OBIA-DNN은 85.0%, U-Net의 경우 95.3%로 분석되었다. 재현성을 평가하기 위해 검증 지역에 인공지능 모형을 적용하였을 때, OBIA-RF는 7%, OBIA-DNN은 2.1%, U-Net은 2.3%의 정확도가 감소하였다. 형태학적인 특성과 분광학적인 특성을 모두 고려한 U-Net이 토지피복 분류 정확도 및 재현성 평가에서 우수한 성능을 보이는 것으로 나타났다. 본 연구의 결과는 정밀한 공간정보가 중요해짐에 따라 기초자료 생성 방법으로써 도시환경 연구분야에 기여할 수 있을 것으로 판단된다.

UAV 자료와 객체기반영상분석을 활용한 대축척 갯벌 표층 퇴적상 분류도 작성 (Generation of Large-scale Map of Surface Sedimentary Facies in Intertidal Zone by Using UAV Data and Object-based Image Analysis (OBIA))

  • 김계림;유주형
    • 대한원격탐사학회지
    • /
    • 제36권2_2호
    • /
    • pp.277-292
    • /
    • 2020
  • 본 연구에서는 천수만 황도 갯벌 지역을 대상으로 UAV 자료와 객체기반영상분석 방법을 사용하여 대축척 갯벌 표층 퇴적상 분류도를 작성하고, 정확도 검증을 수행하여 정밀한 표층 퇴적상 분류의 가능성과 보다 정확한 분류 방법에 대해 제시하였다. 이를 위해 고해상도 UAV 자료에서 가시광 영역의 정사영상과 수치표고모델(DEM), 조류로 밀도 등 퇴적상 분류 시 영향을 주는 요인들을 추출하고, 통계학적 분석 방법을 통해 퇴적상에 따른 요인들의 주성분을 분석하였다. 주성분 요인을 바탕으로 퇴적상 분류 시 사용할 입력 자료를 (1) 가시광 영역의 스펙트럼, (2) 지형 고도와 조류로 밀도, (3) 가시광 영역의 스펙트럼과 지형 고도 및 조류로 밀도로 구분하였으며, 이를 기반으로 객체기반영상분석 분류방법에 입력 자료를 적용하여 대축척 갯벌 표층 퇴적상 분류도를 추출하였다. 입력 자료의 조건에 따라 표층 퇴적상 분류를 수행한 결과, folk 분류 기준을 따르는 6가지의 표층 퇴적상으로 분류하였고, 가시광 영역의 스펙트럼과 지형 고도, 조류로 밀도를 사용할 경우 전체 정확도가 63.04%, Kappa 지수가 0.54로 가장 효과적으로 표층 퇴적상을 분류하였다.

KOMPSAT 영상을 활용한 SLIC 계열 Superpixel 기법의 최적 파라미터 분석 및 변화 탐지 성능 비교 (Optimal Parameter Analysis and Evaluation of Change Detection for SLIC-based Superpixel Techniques Using KOMPSAT Data)

  • 정민경;한유경;최재완;김용일
    • 대한원격탐사학회지
    • /
    • 제34권6_3호
    • /
    • pp.1427-1443
    • /
    • 2018
  • 객체 기반 영상 분석은 영상의 복잡도를 낮추는 동시에 영상의 특성을 유지한다는 점에서 픽셀 기반 영상 분석보다 높은 효율성과 정보 활용 가능성을 지닌다. Superpixel은 일반적인 영상 분할보다 작은 영상 단위로 영상을 과분할함으로써 영상 내의 경계를 보다 잘 유지할 수 있다. 이 가운데 SLIC(Simple linear iterative clustering) superpixel 기법은 기존의 기법들보다 높은 품질의 영상 분할 결과를 제시하는 것으로 알려져 있다. 이러한 SLIC 기법의 입력 파라미터인 superpixel의 개수는 영상 분할 결과에 큰 영향을 미침에도 이에 대한 연구는 선행 연구에서 충분히 다루어지지 않았다. 이에 본 연구에서는 KOMPSAT 영상을 이용하여 변화 탐지 활용 연구를 위한 SLIC 계열 superpixel 기법의 최적 파라미터 분석 및 변화 탐지 성능 비교를 수행하였다. 사용된 superpixel 기법은 SLIC, SLIC0(SLIC의 무변수 버전), SNIC(Simple non-iterative clustering) 의 세 가지 기법으로, $5{\times}5$(픽셀)에서 $50{\times}50$(픽셀)의 superpixel 크기 범위에 대해서 superpixel 개수를 지정하여 superpixel 분할 영상을 생성하고 변화 탐지 참조 영상에 대한 재현율을 분석하였다. 이를 통해 얻어진 최적 superpixel 크기를 바탕으로 변화를 탐지하고자 하는 두 영상의 차 영상을 분할한 후 일정 크기의 객체로 clustering하였다. 두 시기(bi-temporal) 영상으로부터 얻어진 공통된 영상경계는 전후 영상에 각각 적용함으로써 각 superpixel의 feature(Lab 색상 차이) 변화를 탐지하였다. 최종적인 변화 탐지 결과는 참조 영상을 통해 그 성능이 분석하였으며, 영상의 과분할 정도가 높지 않더라도 규칙적인 크기와 형태의 superpixel을 통해 높은 변화 탐지 성능을 달성할 수 있음을 확인하였다.

Land Use Feature Extraction and Sprawl Development Prediction from Quickbird Satellite Imagery Using Dempster-Shafer and Land Transformation Model

  • Saharkhiz, Maryam Adel;Pradhan, Biswajeet;Rizeei, Hossein Mojaddadi;Jung, Hyung-Sup
    • 대한원격탐사학회지
    • /
    • 제36권1호
    • /
    • pp.15-27
    • /
    • 2020
  • Accurate knowledge of land use/land cover (LULC) features and their relative changes over upon the time are essential for sustainable urban management. Urban sprawl growth has been always also a worldwide concern that needs to carefully monitor particularly in a developing country where unplanned building constriction has been expanding at a high rate. Recently, remotely sensed imageries with a very high spatial/spectral resolution and state of the art machine learning approaches sent the urban classification and growth monitoring to a higher level. In this research, we classified the Quickbird satellite imagery by object-based image analysis of Dempster-Shafer (OBIA-DS) for the years of 2002 and 2015 at Karbala-Iraq. The real LULC changes including, residential sprawl expansion, amongst these years, were identified via change detection procedure. In accordance with extracted features of LULC and detected trend of urban pattern, the future LULC dynamic was simulated by using land transformation model (LTM) in geospatial information system (GIS) platform. Both classification and prediction stages were successfully validated using ground control points (GCPs) through accuracy assessment metric of Kappa coefficient that indicated 0.87 and 0.91 for 2002 and 2015 classification as well as 0.79 for prediction part. Detail results revealed a substantial growth in building over fifteen years that mostly replaced by agriculture and orchard field. The prediction scenario of LULC sprawl development for 2030 revealed a substantial decline in green and agriculture land as well as an extensive increment in build-up area especially at the countryside of the city without following the residential pattern standard. The proposed method helps urban decision-makers to identify the detail temporal-spatial growth pattern of highly populated cities like Karbala. Additionally, the results of this study can be considered as a probable future map in order to design enough future social services and amenities for the local inhabitants.

Applicability of Geo-spatial Processing Open Sources to Geographic Object-based Image Analysis (GEOBIA)

  • Lee, Ki-Won;Kang, Sang-Goo
    • 대한원격탐사학회지
    • /
    • 제27권3호
    • /
    • pp.379-388
    • /
    • 2011
  • At present, GEOBIA (Geographic Object-based Image Analysis), heir of OBIA (Object-based Image Analysis), is regarded as an important methodology by object-oriented paradigm for remote sensing, dealing with geo-objects related to image segmentation and classification in the different view point of pixel-based processing. This also helps to directly link to GIS applications. Thus, GEOBIA software is on the booming. The main theme of this study is to look into the applicability of geo-spatial processing open source to GEOBIA. However, there is no few fully featured open source for GEOBIA which needs complicated schemes and algorithms, till It was carried out to implement a preliminary system for GEOBIA running an integrated and user-oriented environment. This work was performed by using various open sources such as OTB or PostgreSQL/PostGIS. Some points are different from the widely-used proprietary GEOBIA software. In this system, geo-objects are not file-based ones, but tightly linked with GIS layers in spatial database management system. The mean shift algorithm with parameters associated with spatial similarities or homogeneities is used for image segmentation. For classification process in this work, tree-based model of hierarchical network composing parent and child nodes is implemented by attribute join in the semi-automatic mode, unlike traditional image-based classification. Of course, this integrated GEOBIA system is on the progressing stage, and further works are necessary. It is expected that this approach helps to develop and to extend new applications such as urban mapping or change detection linked to GIS data sets using GEOBIA.

농촌지역 토지피복분류를 위한 객체기반 영상분석기법 연구 (A Study on Object-Based Image Analysis Methods for Land Cover Classification in Agricultural Areas)

  • 김현옥;염종민
    • 한국지리정보학회지
    • /
    • 제15권4호
    • /
    • pp.26-41
    • /
    • 2012
  • 지구온난화와 함께 홍수와 가뭄 등 기후변화에 대비하기 위해서는 경지현황에 대한 신속하고 정확한 정보를 바탕으로 농업생산량을 효율적으로 관리, 예측, 대비하는 것이 필요하다. 본 연구는 시 도 규모 이상의 넓은 지역을 대상으로 농촌지역 토지피복도 제작을 지원할 수 있는 영상분류 알고리즘 개발을 목표로 객체기반 영상분석기법의 활용가능성과 한계를 검토해 보았다. 추가적인 공간자료의 사용이 최소화된 상태에서 다중시기 RapidEye 위성영상의 분광정보 활용가능성을 테스트해 보고자 하였으며, 사례연구지인 김제지역 일대($1,300km^2$)에 대한 토지피복 분류 정확도는 80.3%로 양호하게 나타났다. 분석에 사용된 RapidEye의 6.5m 공간해상도는 대체로 작은 규모로 경작되는 우리나라 경지의 공간적 특성 추출이 가능하다는 것을 보여주었으며, 객체기반의 영상분석 기법은 분석가의 전문지식을 분류과정에서 다양한 방법으로 구현해냄으로써 영상정보 활용의 최적화를 꾀할 수 있음을 보여주었다. 또한, 기개발된 영상분류 알고리즘을 저장하고, 분석목적에 맞게 세부 변수들을 조정하여 다른 지역 또는 다른 영상에 응용할 수 있다는 장점이 있다. 하지만, 객체기반 영상분류의 근간이 되는 영상분할 과정은 정량적으로 명확히 설명되지 않는 경우가 많아 분석자의 경험과 전문지식을 바탕으로 최선의 결과를 도출하는 것이 요구된다.

영상분할 결과 평가 방법의 적용성 비교 분석 (Comparative Analysis of Evaluation Methods for Image Segmentation Results)

  • 서원우;이규성
    • 대한원격탐사학회지
    • /
    • 제37권2호
    • /
    • pp.257-274
    • /
    • 2021
  • 고해상도 원격탐사 영상의 객체기반 분석에서 영상분할의 결과는 매우 중요한 부분이지만, 영상분할품질의 평가는 간과되고 있다. 본 연구에서는 영상분할의 최적 매개변수를 구하기 위한 실용적이고 효율적인 방법을 제시하고자 한다. 영상분할 평가는 크게 무감독 평가, 감독 평가, 그리고 시각적 판독에 의한 정성적 평가로 나눈다. 인천대공원 무인기 다중분광영상에서 추출한 도시 지역과 산림을 대상으로 세 가지 영상분할 평가 방법을 비교하였다. 영상분할 평가 방법은 계산 및 적용의 효율성에 따라 차이가 있지만, 표본영상에 대한 평가 결과 도출된 최적의 매개변수는 세 평가 방법에서 거의 동일하게 나타났다. 영상분할 평가를 통하여 도출된 최적의 매개변수는 도시영상과 산림영상에서 다르게 나타났다. 세 가지 조각 내부변이 척도(V, WV, COV)와 세 가지 조각간 이질성 척도(MI, BSH, DTNP)의 조합을 적용한 무감독 평가로 선정한 최적의 매개변수는 거의 같았다. 무감독 평가를 위한 척도마다 처리 과정의 난이도는 다르지만, 실험에 적용된 여러 종류의 척도는 대부분 동일한 성능을 보여주었다. 감독 평가 방법은 참조자료를 구성하는 과정에서 분석자의 주관으로 편향될 가능성이 있지만, 특정 공간객체를 탐지하는 데 간편하게 적용할 수 있다. 정성적 평가는 무감독 및 감독 평가 결과와 일치했다.