• Title/Summary/Keyword: OB stellar associations

Search Result 7, Processing Time 0.022 seconds

THE STUDY OF OB STELLAR ASSOCIATIONS WITH THE GLAZAR

  • TOVMASSIAN H. M.;HOVHANNESSIAN R. KH.;EPREMIAN R. A.;HUGUENIN D.;NAVARRO S. G.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.149-150
    • /
    • 1996
  • The results of observations of a dozen OB stellar associations made with the ultraviolet space telescope Glazar is presented.

  • PDF

A kinematic study of young stars in Monoceros OB1 and R1 associations

  • Lim, Beomdu;Naze, Yael;Hong, Jongsuk;Yoon, Sungyong;Lee, Jinhee;Hwang, Narae;Park, Byeong-Gon;Lee, Jeong-Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.50.1-50.1
    • /
    • 2021
  • The Gaia mission opens a new window to study the kinematics and dynamics of young stellar systems in detail. The kinematic properties of young stars provide vital constraints on the formation process of their host systems. Here, we present a kinematic study of the two associations Monoceros OB1 (Mon OB1) and R1 (Mon R1). Member candidates are first selected from the published list of member candidates, a compilation of OB star catalogues, and the classification of young stellar objects with the AllWISE data. According to the conventional wisdom, we selected a total of 728 members with similar proper motions at almost the same distance. Mon OB1 and Mon R1 have high levels of substructures that are also kinematically distinct. We identify six stellar groups in these associations, of which five show a pattern of expansion. In addition, the signature of rotation is found in two stellar groups of Mon OB1. Star formation history is inferred from a color-magnitude diagram. As a result, star formation in Mon OB1 has been sustained for several million years, while Mon R1 formed at almost the same epoch as the recent star formation in Mon OB1. Some old members in the outskirt of Mon OB1 have outward motions, which rules out the previously proposed outside-in star formation scenario. Star-forming regions including Mon OB1 and Mon R1 are found along a large arc-like gas structure. Hence, the formation of these two associations may originate from the hierarchical star formation along filaments in a turbulent molecular cloud.

  • PDF

A pilot study of the two OB associations Cygnus OB2 and Carina OB1 using the Gaia data

  • Lim, Beomdu;Naze, Yael;Gosset, Eric;Rauw, Gregor
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.47.2-47.2
    • /
    • 2019
  • We present a kinematic study of the two young OB associations Cygnus OB2 and Carina OB1 using the recently released Gaia astrometric data. The unimodal distributions of parallaxes of stars indicate that these associations are real stellar systems, rather than line-of-sight coincidences. The associations are found to comprise dense star clusters and a sparse halo which have different proper motions. Clusters have small spatial sizes with small dispersions in proper motion, while the haloes extending to tens of parsecs have a large dispersion in proper motion. We speculate that this aspect is related to that found in molecular clouds, the so-called "line width-size" relation. In this talk, the formation process of these associations is discussed, based on our findings.

  • PDF

Internal structure and kinematics of the massive star forming region W4

  • Lim, Beomdu;Yun, Hyeong-Sik;Rauw, Gregor;Naze, Yael;Kim, Jinyoung S.;Lee, Jeong-Eun;Hwang, Narae;Park, Byeong-Gon;Park, Sunkyung;Sung, Hwankyung;Kim, Seulgi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.72.3-72.3
    • /
    • 2019
  • OB associations are young stellar systems on a few tens to a hundred parsec scale, and many of them are composed of multiple substructures. It is suggested that some hints about their formation process are probably imprinted on structural features and internal kinematics. In this context, we study the massive star forming region W4 in the Cassiopeia OB6 association using the Gaia proper motion data and high-resolution optical spectra taken from Hectochelle on MMT. We probe the structure and internal kinematics of W4 to trance its formation process. Several nonmembers with different kinematic properties are excluded in our sample. Some of them may be young stellar population spread over a large area of the Perseus spiral arm given their wide spatial distribution over 50 parsecs. W4 is composed of an central open cluster (IC 1805) and an extended stellar component. Their global expansion patterns are detected in stellar proper motion. In this presentation, we will further discuss the formation process of W4, based on the velocity dispersions of stars comprising these substructure.

  • PDF

UBVI CCD PHOTOMETRY OF YOUNG OPEN CLUSTERS. II. BOCHUM 7

  • SUNG HWANKYUNG;BESSELL M. S.;PARK B.-G.;KANG Y. H.
    • Journal of The Korean Astronomical Society
    • /
    • v.32 no.2
    • /
    • pp.109-117
    • /
    • 1999
  • UBVI CCD photometry has been obtained for a region around the Wolf-Rayet star WR 12. We found two young stellar associations in the observed field: the nearer one comprises the field members of Vela OBI association at d = 1.8kpc, while the farther one is the young open cluster Bochum 7 (Bo 7) at d = 4.8kpc. The stars associated with Bo 7 showed no central concentration which suggests that Bo 7 is not a young open cluster but simply a local concentration in the density of young stars belonging to the OB association (Vel OB3). These two associations have similar ages but remarkably different mass function slopes ($\Gamma$ = -2.1 $\pm$ 0.3 for Vel OBI and -1.0 $\pm$ 0.3 for Bo 7). The stars in Vel OBI shows an evident age spread (${\Delta}T\~ 9Myr$). We also found two strong H$\alpha$ emission stars - WR 12 and $\sharp$1066 - from narrow band H$\alpha$ photometry.

  • PDF

STELLAR CONTENTS AND GLOBULAR CLUSTER CANDIDATES IN THE SCULPTOR GROUP GALAXY NGC 300

  • KIM SANG CHUL;SUNG HWANKYUNG;LEE MYUNG GYOON
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.9-28
    • /
    • 2002
  • We present UBVI CCD photometry of the stellar contents and globular cluster(GC) candidates in the spiral galaxy NGC 300 in the Sculptor group. Color-magnitude diagrams for 18 OB associations having more than 30 member stars are presented. The slope of the initial mass function for the bright stars in NGC 300 is estimated to be ${\Gamma}= -2.6{\pm} 0.3$. Assuming the distance to NGC 300 of (m - M)o = 26.53 $\pm$ 0.07, the mean absolute magnitude of three brightest blue stars is obtained to be < $M_v^{BSG}$ (3) > = -8.95 mag. We have performed search for GCs in NGC 300 and have found 17 GC candidates in this galaxy. Some characteristics of these GC candidates are discussed.

Core formation in different environments: Planck Galactic Cold Clumps (PGCCs) in the λ Orionis cloud, Orion A and Orion B clouds

  • Yi, HeeWeon;Lee, Jeong-Eun;Liu, Tie;Kim, Kee-Tae;Wu, Yuefang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.37.4-38
    • /
    • 2016
  • Based on the $850{\mu}m$ dust continuum data from James Clerk Maxwell Telescope (JCMT)/SCUBA-2, we compare overall properties of Planck Galactic Cold Clumps (PGCCs) in the ${\lambda}$ Orionis cloud with PGCCs in other molecular clouds, Orion A and Orion B. The Orion A and Orion B clouds are well known active star-forming region, while, ${\lambda}$ Orionis cloud has a different environment associating with prominent OB associations and a giant H II region. PGCCs in the ${\lambda}$ Orionis cloud have higher dust temperatures (Td~16.08 K) and lower values of dust emissivity (${\beta}{\sim}1.65$) than Orion A and Orion B clouds. In addition, we found the lowest detection rate (16 %, 8 out of 50) of PGCCs at $850{\mu}m$ in the ${\lambda}$ Orionis cloud while among three regions; Orion A and Orion B clouds show much higher detection rates of ~ 76 % (23 out of 30) and 56 % (9 out of 16), respectively. The detected 8 PGCCs in the ${\lambda}$ Orionis cloud have substructures and we identified 15 cores. The cores also show much lower median values of size (~0.08 pc), column density (~ ), number density (~ ), and mass (~ ) compared with other cores in the Orion A and Orion B clouds. These core properties in the ${\lambda}$ Orionis cloud can be attributed to the compression and external heating by the nearby H II region, which may prevent the PGCCs from forming gravitationally bound structures and eventually disperse them. These results well present the negative stellar feedback to core formation.

  • PDF