• 제목/요약/키워드: OATP-C

검색결과 4건 처리시간 0.017초

Human Organic Anion Transporting Polypeptide 1B3 Applied as an MRI-Based Reporter Gene

  • Song-Ee Baek;Asad Ul-Haq;Dae Hee Kim;Hyoung Wook Choi;Myeong-Jin Kim;Hye Jin Choi;Honsoul Kim
    • Korean Journal of Radiology
    • /
    • 제21권6호
    • /
    • pp.726-735
    • /
    • 2020
  • Objective: Recent innovations in biology are boosting gene and cell therapy, but monitoring the response to these treatments is difficult. The purpose of this study was to find an MRI-reporter gene that can be used to monitor gene or cell therapy and that can be delivered without a viral vector, as viral vector delivery methods can result in long-term complications. Materials and Methods: CMV promoter-human organic anion transporting polypeptide 1B3 (CMV-hOATP1B3) cDNA or CMV-blank DNA (control) was transfected into HEK293 cells using Lipofectamine. OATP1B3 expression was confirmed by western blotting and confocal microscopy. In vitro cell phantoms were made using transfected HEK293 cells cultured in various concentrations of gadoxetic acid for 24 hours, and images of the phantoms were made with a 9.4T micro-MRI. In vivo xenograft tumors were made by implanting HEK293 cells transfected with CMV-hOATP1B3 (n = 4) or CMV-blank (n = 4) in 8-week-old male nude mice, and MRI was performed before and after intravenous injection of gadoxetic acid (1.2 µL/g). Results: Western blot and confocal microscopy after immunofluorescence staining revealed that only CMV-hOATP1B3-transfected HEK293 cells produced abundant OATP1B3, which localized at the cell membrane. OATP1B3 expression levels remained high through the 25th subculture cycle, but decreased substantially by the 50th subculture cycle. MRI of cell phantoms showed that only the CMV-hOATP1B3-transfected cells produced a significant contrast enhancement effect. In vivo MRI of xenograft tumors revealed that only CMV-hOATP1B3-transfected HEK293 tumors demonstrated a T1 contrast effect, which lasted for at least 5 hours. Conclusion: The human endogenous OATP1B3 gene can be non-virally delivered into cells to induce transient OATP1B3 expression, leading to gadoxetic acid-mediated enhancement on MRI. These results indicate that hOATP1B3 can serve as an MRI-reporter gene while minimizing the risk of long-term complications.

Bosentan and Rifampin Interactions Modulate Influx Transporter and Cytochrome P450 Expression and Activities in Primary Human Hepatocytes

  • Han, Kyoung-Moon;Ahn, Sun-Young;Seo, Hyewon;Yun, Jaesuk;Cha, Hye Jin;Shin, Ji-Soon;Kim, Young-Hoon;Kim, Hyungsoo;Park, Hye-kyung;Lee, Yong-Moon
    • Biomolecules & Therapeutics
    • /
    • 제25권3호
    • /
    • pp.288-295
    • /
    • 2017
  • The incidence of polypharmacy-which can result in drug-drug interactions-has increased in recent years. Drug-metabolizing enzymes and drug transporters are important polypharmacy modulators. In this study, the effects of bosentan and rifampin on the expression and activities of organic anion-transporting peptide (OATP) and cytochrome P450 (CYP450) 2C9 and CYP3A4 were investigated in vitro. HEK293 cells and primary human hepatocytes overexpressing the target genes were treated with bosentan and various concentrations of rifampin, which decreased the uptake activities of OATP transporters in a dose-dependent manner. In primary human hepatocytes, CYP2C9 and CYP3A4 gene expression and activities decreased upon treatment with $20{\mu}M$ $bosentan+200{\mu}M$ rifampin. Rifampin also reduced gene expression of OATP1B1, OATP1B3, and OATP2B1 transporter, and inhibited bosentan influx in human hepatocytes at increasing concentrations. These results confirm rifampin- and bosentan-induced interactions between OATP transporters and CYP450.

Physiologically-based pharmacokinetic predictions of intestinal BCRP-mediated drug interactions of rosuvastatin in Koreans

  • Bae, Soo Hyeon;Park, Wan-Su;Han, Seunghoon;Park, Gab-jin;Lee, Jongtae;Hong, Taegon;Jeon, Sangil;Yim, Dong-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권3호
    • /
    • pp.321-329
    • /
    • 2018
  • It was recently reported that the $C_{max}$ and AUC of rosuvastatin increases when it is coadministered with telmisartan and cyclosporine. Rosuvastatin is known to be a substrate of OATP1B1, OATP1B3, NTCP, and BCRP transporters. The aim of this study was to explore the mechanism of the interactions between rosuvastatin and two perpetrators, telmisartan and cyclosporine. Published (cyclosporine) or newly developed (telmisartan) PBPK models were used to this end. The rosuvastatin model in Simcyp (version 15)'s drug library was modified to reflect racial differences in rosuvastatin exposure. In the telmisartan-rosuvastatin case, simulated rosuvastatin $C_{maxI}/C_{max}$ and $AUC_I/AUC$ (with/without telmisartan) ratios were 1.92 and 1.14, respectively, and the $T_{max}$ changed from 3.35 h to 1.40 h with coadministration of telmisartan, which were consistent with the aforementioned report ($C_{maxI}/C_{max}$: 2.01, $AUC_I/AUC$:1.18, $T_{max}:5h{\rightarrow}0.75h$). In the next case of cyclosporine-rosuvastatin, the simulated rosuvastatin $C_{maxI}/C_{max}$ and $AUC_I/AUC$ (with/without cyclosporine) ratios were 3.29 and 1.30, respectively. The decrease in the $CL_{int,BCRP,intestine}$ of rosuvastatin by telmisartan and cyclosporine in the PBPK model was pivotal to reproducing this finding in Simcyp. Our PBPK model demonstrated that the major causes of increase in rosuvastatin exposure are mediated by intestinal BCRP (rosuvastatin-telmisartan interaction) or by both of BCRP and OATP1B1/3 (rosuvastatin-cyclosporine interaction).

프라바스타틴에서 $SLCO1B1^*15$의 약동학적 영향: 체계적 고찰 및 메타분석 (Effect of $SLCO1B1^*15$ on Pravastatin Pharmacokinetics: A Systematic Review and Meta-analysis)

  • 김종윤;나오토 나카가와;윤현옥;천부순;유기연
    • 한국임상약학회지
    • /
    • 제24권4호
    • /
    • pp.231-239
    • /
    • 2014
  • Background and objective: Pravastatin has been shown to have favorable risk-benefit profile when it is administered to hypercholesterolemic subjects to prevent cardiovascular events. However, subjects with impaired OATP1B1 activity may be more susceptible to pravastatin-induced muscle toxicity than subjects with normal OATP1B1 activity. A systematic review was conducted to evaluate the effect of SLCO1B1 genetic polymorphism on pharmacokinetics of pravastatin. Method: Medline$^{(R)}$ and Embase$^{(R)}$ were searched for relevant studies until July 2013. The search terms used were pravastatin AND (SLCO1B1 OR OATP1B1 OR LST1 OR SLC21A6) AND (gene OR $genetic^*$ OR $genomic^*$ OR $pharmacogenet^*$ OR $pharmacogenom^*$ OR $polymorph^*$). Results: A meta-analysis of the area under the concentration-time curve (AUC) of pravastatin in $SLCO1B1^*15$ and $SLCO1B1^*1a/^*1a$ was conducted. Five studies met all the inclusion criteria and methodological requirements. There was no statistically significant difference in the AUC value between $SLCO1B1^*15$ and $SLCO1B1^*1a/^*1a$ (p=0.728). However, $SLCO1B1^*15$ participants exhibited significantly higher AUC values than $SLCO1B1^*1b/^*1b$ carriers (p<0.001). In case of $SLCO1B1^*15^*15$ carriers, they had significantly higher AUC value than $SLCO1B1^*1a/^*1a$ subjects (p=0.002). Lastly, compared with to the subjects of $SLCO1B1^*1a/^*1a$, the carriers of heterozygous $SLCO1B1^*15$ increased the AUC value of pravastatin statistically significantly in Asian population (p=0.014). Conclusion: The present meta-analysis suggests that subjects with $SLCO1B1^*15$ are associated with increased AUC of pravastatin.