• Title/Summary/Keyword: Nutrition Digestibility

Search Result 596, Processing Time 0.036 seconds

Supplementing Vitamin E to the Ration of Beef Cattle Increased the Utilization Efficiency of Dietary Nitrogen

  • Wei, Chen;Lin, Shixin;Wu, Jinlong;Zhao, Guangyong;Zhang, Tingting;Zheng, Wensi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.372-377
    • /
    • 2016
  • The objectives of the trial were to investigate the effects of supplementing vitamin E (VE) on nutrient digestion, nitrogen (N) retention and plasma parameters of beef cattle in feedlot. Four growing Simmental bulls, fed with a total mixed ration composed of corn silage and concentrate mixture as basal ration, were used as the experimental animals. Four levels of VE product, i.e. 0, 150, 300, 600 mg/head/d (equivalent to 0, 75, 150, 300 IU VE/head/d), were supplemented to the basal ration (VE content 38 IU/kg dry matter) in a $4{\times}4$ Latin square design as experimental treatments I, II, III and IV, respectively. Each experimental period lasted 15 days, of which the first 12 days were for pretreatment and the last 3 days for sampling. The results showed that supplementing VE did not affect the nutrient digestibility (p>0.05) whereas decreased the urinary N excretion (p<0.01), increased the N retention (p<0.05) and tended to increase the microbial N supply estimated based on the total urinary purine derivatives (p = 0.057). Supplementing VE increased the plasma concentrations of VE, glucose and triglycerol (TG) (p<0.05) and tended to increase the plasma concentration of total protein (p = 0.096) whereas did not affect the plasma antioxidant indices and other parameters (p>0.05). It was concluded that supplementing VE up to 300 IU/head/d did not affect the nutrient digestibility whereas supplementing VE at 150 or 300 IU/head/d increased the N retention and the plasma concentrations of VE and TG (p<0.05) of beef cattle.

Effect of heat stress on growth performance and blood profiles in finishing pigs

  • Kim, Byeonghyeon;Kim, Hye Ran;Kim, Ki Hyun;Kim, Minji;Baek, Youl-Chang;Lee, Sung Dae;Jeong, Jin Young
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.683-691
    • /
    • 2020
  • A biomarker is needed to monitor and manage the health of pigs from heat stress (HS). Therefore, we investigated the effects of HS on growth performance, nutrient digestibility, and blood profiles in finishing pigs. A total of 12 finishing pigs (n = 12) were raised in thermal neutral (TN; 25℃) conditions for a 3-d adaptation period. After the adaption, 6 pigs were exposed to HS at 33℃ (HS33) for 5 d. The pigs were fed the same diet based on corn and soybean meal. Chromic oxide was added to all the diets at a level of 2 g·kg-1 as an indigestible marker for the determination of the apparent total track digestibility (ATTD) of nutrients and amino acids. Blood samples were collected after the adaptation and heat treatment to verify the blood profiles. The HS33 pigs had a lower (p < 0.01) average daily feed intake (ADFI) and higher (p < 0.05) rectal temperature compared to the TN pigs. However, there was no difference in the ATTD of nutrients and amino acids. The HS33 pigs had reduced (p < 0.05) levels of serum glucose, non-esterified fatty acids (NEFA), total protein, albumin, and calcium compared to the TN pigs. However, the level of total bilirubin was increased (p < 0.05) in the HS pigs. In conclusion, HS reduced the feed intake and had an adverse effect on health. Altered blood profiles as a result of a negative energy balance are expected to be biomarkers of HS in finishing pigs.

In vitro Digestibility Assessment of CP4EPSPS in GM Soybean under Different Conditions of Simulated Gastric Fluid and Preheating (인공위액조건과 예열처리에 따른 GM 콩 도입단백질(CP4EPSPS)의 소화성 평가)

  • Choi, Mi-Hee;Kim, Gun-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1310-1314
    • /
    • 2012
  • Gastrointestinal digestibility of new proteins inserted in the food supply is a significant parameter for assessing the safety of GM foods based on the assumption that digestive stability is undesirable. In this study, we performed in vitro digestion of CP4EPSPS, a new protein, expressed in genetically modified (GM) soybean in order to evaluate its digestibility in three different ratios of simulated gastric fluid with preheating. Ratios of GM soybean to simulated gastric fluid were 2:2, 2.5:1.5, and 1.5:2 and preheating was conducted at $100^{\circ}C$ for 5 min. Electrophoresis and Western blotting were used to confirm changes in soybean protein patterns and CP4EPSPS gene expression after in vitro digestion. At ratios in which the amount of gastric fluid was equal to (2:2) or relatively higher than that of soybean (1.5:2), no CP4EPSPS (47.4 kDa) protein was detected after 15 seconds of simulated gastric fluid incubation, the earliest time interval evaluated. However, when the ratio of GM soybean to gastric fluid was 2.5:1.5, CP4EPSPS was detected in 5 min and gradually decreased according to time. After preheating, no CP4EPSPS protein was detected after 15 seconds under all conditions. From these results, we concluded that the digestibility of CP4EPSPS in simulated gastric fluid increased upon preheating. Accordingly, we suggest that it is important to account for the ratio of gastric fluid to GM food in in vitro digestibility assessment models of GM food.

Effects of Dietary Copper on Ruminal Fermentation, Nutrient Digestibility and Fibre Characteristics in Cashmere Goats

  • Zhang, Wei;Wang, Runlian;Zhu, Xiaoping;Kleemann, David O;Yue, Chungwang;Jia, Zhihai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.12
    • /
    • pp.1843-1848
    • /
    • 2007
  • Thirty-six 1.5 year-old Inner Mongolian White Cashmere wether goats (body weight $28.14{\pm}1.33$ kg) were used to determine the effects of dietary copper (Cu) concentration on ruminal fermentation, nutrient digestibility and cashmere fibre characteristics. Wethers were fed a basal diet (containing 7.46 mg Cu/kg DM) that was supplemented with either 0 (control), 10, 20 or 30 mg Cu/kg DM. To ensure full consumption, animals were fed restrictedly with 0.75 kg feed (DM) in two equal allotments per day. The results indicated that: (1) supplemental 10 mg Cu/kg DM in the basal diet significantly (p<0.05) decreased ruminal fluid pH value and total VFA concentrations were significantly (p<0.05) increased on all Cu treatment groups. (2) Cu supplementation had no influence on DM intake and digestibility of DM, CP and ADF (p>0.05); however, NDF digestibility of groups supplemented with 10 and 20 mg Cu/kg DM were significantly higher than that of the control group (p<0.05). Apparent absorption and retention of copper were decreased with increasing level of supplementation. (3) 20 mg Cu/kg DM treatment significantly (p<0.05) improved cashmere growth rate, but cashmere diameter was not affected by Cu supplementation (p>0.05). In conclusion, supplementation of cashmere goats with Cu at the rate of 10 to 20 mg/kg DM in the basal diet resulted in some changed rumen fermentation and was beneficial for NDF digestibility, while supplementation of 20 mg Cu/kg DM improved cashmere growth. Collectively, the optimal supplemental Cu level for cashmere goats during the fibre growing period was 20 mg/kg DM (a total dietary Cu level of 27.46 mg/kg DM).

Effects of body weight and fiber sources on fiber digestibility and short chain fatty acid concentration in growing pigs

  • Zhao, Jinbiao;Liu, Xuzhou;Zhang, Yi;Liu, Ling;Wang, Junjun;Zhang, Shuai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.1975-1984
    • /
    • 2020
  • Objective: The study was conducted to determine the effects of body weight (BW) and fiber sources on nutrient digestibility, fiber fermentation and short chain fatty acids (SCFA) concentration in different intestinal segments of growing pigs fed high-fiber diets. Methods: Nine barrows with initial BW of 25.17±0.73 kg and 9 barrows with initial BW of 63.47±2.18 kg were allotted to a duplicate 9×2 Youden Square design with 3 dietary treatments and 2 periods. The dietary treatments were formulated with 3 different high-fiber ingredients: corn bran, sugar beet pulp, and soybean hulls, respectively. Each diet was fed to 3 barrows with different stage of BW in each period. Results: There were no differences in the apparent ileal digestibility (AID) of most nutrients between pigs at different BW stages. Pigs at 60 kg had greater (p<0.05) apparent total tract digestibility (ATTD) of total dietary fiber (TDF), soluble dietary fiber (SDF) and insoluble dietary fiber (IDF), and had greater (p<0.05) hindgut disappearance of IDF and cellulose than pigs at 25 kg. The acetate, propionate and total SCFA concentrations in ileal digesta and feces of pigs at 60 kg were greater (p<0.05) than those of pigs at 25 kg. In addition, fiber sources affected (p<0.05) the AID of gross energy (GE), organic matter (OM), ether extract (EE), crude protein, SDF and hemicellulose, the hindgut disappearance and ATTD of dietary fiber components, the lactate and propionate concentrations in ileal digesta and the butyrate, valerate and total SCFA concentrations in feces. There were interactions (p<0.05) between BW and fiber sources on the AID of GE, OM, EE, SDF, hemicellulose, the ATTD of EE, TDF, and IDF, and the hindgut disappearance of SDF and hemicellulose. Conclusion: Increasing BW mainly improved the digestibility of dietary fiber fractions, and the dietary fiber sources influenced the digestibility of almost all the dietary nutrients in growing pigs.

Nitrogen Balance in Goats Fed Flemingia (Flemingia Macrophylla) and Jackfruit (Artocarpus Heterophyllus) Foliage Based Diets and Effect of a Daily Supplementation of Polyethylene Glycol (PEG) on Intake and Digestion

  • Mui, Nguyen Thi;Ledin, Inger;Uden, Peter;Binh, Dinh Van
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.5
    • /
    • pp.699-707
    • /
    • 2002
  • Diets with foliage of Flemingia (Flemingia macrophylla) or Jackfruit (Artocapus heterophyllus were fed to goats with the objective to study nitrogen (N) balance and effect of a daily supplementation of polyethylene glycol (PEG) on intake and digestion. In experiment 1, three male Alpine${\times}$Jamnapary goats with initial weights varying from 26.9 to 27.7 kg were used in a $3{\times}3$ Latin square design in the dry season. Three Alpine${\times}$Bachthao crosses, 15.3-16.7 kg, were used in the same design in the wet season. The three diets were based on chopped whole sugar cane complemented with the two green foliages, Jackfruit and Flemingia, or soybean meal (SBM). The level of dry matter (DM) offered was 4% of body weight (BW), 2.7% as foliage and 1.3% as chopped whole sugar cane. The amount of SBM offered was calculated to give the same amount of crude protein (CP) as the foliages. Each experimental period lasted 32 days (14 days for adaptation, 7 days for collection and 10 days for rest). Feed intake, apparent digestibility of DM, organic matter (OM), CP, neutral detergent fiber (NDF) and acid detergent fiber (ADF) and retained nitrogen (N) were measured by total faecal and urine collection. In experiment 2, four male goats (Alpine${\times}$Jamnapary) with initial weights from 17.1 to 23.1 kg were used in a $4{\times}4$ Latin square design. The four treatments were Jackfruit or Flemingia with or without addition of PEG, which was fed at a level of 5 g/goat and day by mixing with a small amount of rice bran. Each experimental period lasted 15 days (8 days for adaptation, 7 days for collection). Measurements were done as in experiment 1. The DM digestibility was highest (65.9-74.3%) for goats fed the SBM diet in both the dry and wet season. The DM digestibility of goats fed the Jackfruit and the Flemingia diets was similar in both the dry (58.6-59.2% respectively) and the wet season (53.9-56.1% respectively). The CP digestibility was highest (73.0-73.6%) for the SBM diet followed by the Jackfruit diet (47.0-38.5%) and was lowest (36.8-30.0%) for the Flemingia diet in both dry and wet seasons, respectively. The NDF digestibility was low for both the Jackfruit (36.4%) and Flemingia (38.0%) diets in the wet season. All diets resulted in a positive N balance. The N retention was highest (0.465-0.604 g/kg $W^{0.75}$) in the SBM diets and lowest (0.012-0.250 g/kg $W^{0.75}$) in the Flemingia diet. Addition of PEG had no effect on feed intake for any of the diets. PEG added in the Flemingia diet had a positive effect only on NDF digestibility, but the digestibility of the Jackfruit diet was significantly increased. Supplementation with PEG reduced digestibility and N retention of Flemingia, possibly because of the low tannin level, but increased digestibility and N retention for Jackfruit foliage.

Optimization of Solid State Fermentation of Mustard (Brassica campestris) Straw for Production of Animal Feed by White Rot Fungi (Ganoderma lucidum)

  • Misra, A.K.;Mishra, A.S.;Tripathi, M.K.;Prasad, R.;Vaithiyanathan, S.;Jakhmola, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.208-213
    • /
    • 2007
  • The objective of the experiment was to determine the optimum cultural [moisture levels (55, 60 and 70%), days of fermentation (7, 14 and 21), temperature (25 and $35^{\circ}C$) of incubation)] and nutritional parameters (urea addition (0 and 2%) and variable levels of single super phosphate (0.25 and 0.50% SSP)) for bio-processing of the mustard (Brassica campestris) straw (MS) under solid-state fermentation (SSF) system. The performance of SSF was assessed in terms of favorable changes in cell wall constituents, protein content and in vitro DM digestibility of the MS. Sorghum based inoculum (seed culture) of Ganoderma lucidum to treat the MS was prepared. The 50 g DM of MS taken in autoclavable polypropylene bags was mixed with a pre-calculated amount of water and the particular nutrient in the straw to attained the desired levels of water and nutrient concentration in the substrate. A significant progressive increase in biodegradation of DM (p<0.001), NDF (p<0.01) and ADF (p<0.05) was observed with increasing levels of moisture. Among the cell wall constituents the loss of ADF fraction was greatest compared to that of NDF. The loss of DM increased progressively as the fermentation proceeded and maximum DM losses occurred at 28 days after incubation. The protein content of the treated MS samples increased linearly up to the day $21^{th}$ of the incubation and thereafter declined at day $28^{th}$, whereas the improvement in in vitro DM digestibility were apparent only up to the day $14^{th}$ of the incubation under SSF and there after it declined. The acid detergent lignin (ADL) degradation was slower during the first 7 days of SSF and thereafter increased progressively and maximum ADL losses were observed at the day $28^{th}$ of the SSF. The biodegradation of DM and ADL was not affected by the variation in incubation temperature. Addition of urea was found to have inhibitory effect on fungal growth. The effect of both the levels (0.25 and 0.50) of SSP addition in the substrate, on DM, NDF, ADF, cellulose and ADL biodegradation was similar. Similarly, the protein content and the in vitro DM digestibility remain unaffected affected due to variable levels of the SSP inclusion in the substrate. From the results it may be concluded that the incubation of MS with 60 percent moisture for 21 days at $35^{\circ}C$ with 0.25 percent SSP was most suitable for MS treatment with Ganoderma lucidum. Maximum delignification, enrichment in the protein content and improvement in in vitro DM digestibility were achieved by adopting this protocol of bioprocessing of MS.

Effects of Fermented Potato Pulp on Performance, Nutrient Digestibility, Carcass Traits and Plasma Parameters of Growing-finishing Pigs

  • Li, P.F.;Xue, L.F.;Zhang, R.F.;Piao, Xiangshu;Zeng, Z.K.;Zhan, J.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.10
    • /
    • pp.1456-1463
    • /
    • 2011
  • A total of 629 Duroc${\times}$Landrace${\times}$Large White crossbred pigs were utilized in three experiments (Exp. 1, 222 pigs weighing $25.6{\pm}2.0\;kg$ BW; Exp. 2, 216 pigs weighing 5$6.2{\pm}4.3\;kg$ BW; Exp. 3, 191 pigs weighing $86.4{\pm}4.6\;kg$ BW) conducted to determine the effects of fermented potato pulp on performance, nutrient digestibility, carcass traits and plasma parameters in growingfinishing pigs. Each experiment lasted 28 d. The pigs were assigned to one of two corn-soybean meal-based diets containing 0 or 5% fermented potato pulp. The inclusion of fermented potato pulp increased weight gain (p<0.05) in experiments 1 and 2 and increased feed intake (p<0.05) in experiment 2. Feed conversion was improved (p<0.05) in experiment 2 and showed a tendency to improve (p<0.10) in experiments 1 and 3 when pigs were fed fermented potato pulp. Fermented potato pulp increased (p<0.05) dry matter digestibility in experiments 1 and 3 and energy digestibility in experiment 2. Feeding fermented potato pulp decreased plasma urea nitrogen (p<0.05) and alanine aminotransferase (p<0.05) in experiments 1 and 2, while plasma aspartate aminotransferase was decreased (p<0.05) in experiment 3. Dietary fermented potato pulp did not affect the carcass characteristics of finishing pigs. Feeding fermented potato pulp reduced (p<0.05) fecal ammonia concentration in all three experiments. In conclusion, feeding growing-finishing pigs diets containing 5% fermented potato pulp improved weight gain and feed conversion without any detrimental effects on carcass traits. The improvements in pig performance appeared to be mediated by improvements in nutrient digestibility.