• 제목/요약/키워드: Nutrients load

검색결과 92건 처리시간 0.026초

Effect of nutrient composition in a mixed meal on the postprandial glycemic response in healthy people: a preliminary study

  • Kim, Jiyoung S.;Nam, Kisun;Chung, Sang-Jin
    • Nutrition Research and Practice
    • /
    • 제13권2호
    • /
    • pp.126-133
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: The glycemic index (GI) is a measure of the postprandial glucose response (PPGR) to food items, and glycemic load (GL) is a measure of the PPGR to the diet. For those who need to maintain a healthy diet, it is beneficial to regulate appropriate levels of blood glucose. In reality, what influences the meal GI or GL depends on the macronutrient composition and the physical chemistry reactions in vivo. Thus, we investigated whether different macronutrients in a meal significantly affect the PPGR and the validity of calculated GI and GL values for mixed meals. SUBJECTS/METHODS: 12 healthy subjects (6 male, 6 female) were recruited at a campus setting, and subjects consumed a total of 6 test meals one by one, each morning between 8:00 and 8:30 am after 12 h of fasting. PPGR was measured after each consumed meal and serial finger pricks were performed at indicated times. Test meals included 1) 68 g oral glucose, 2) 210 g rice, 3) rice plus 170 g egg white (RE), 4) rice plus 200 g bean sprouts (RS), 5) rice plus 10 g oil (RO), and 6) rice plus, egg white, bean sprouts, and oil (RESO). The incremental area under the curve (iAUC) was calculated to assess the PPGR. Mixed meal GI and GL values were calculated based on the nutrients the subjects consumed in each of the test meals. RESULTS: The iAUC for all meals containing two macronutrients (RS, RO, or RE) were not significantly different from the rice iAUC, whereas, the RESO iAUC ($2,237.5{\pm}264.9$) was significantly lower (P < 0.05). The RESO meal's calculated GI and GL values were different from the actual GI and GL values measured from the study subjects (P < 0.05). CONCLUSIONS: The mixed meal containing three macronutrients (RESO) decreased the PPGR in healthy individuals, leading to significantly lower actual GI and GL values than those derived by nutrient-based calculations. Thus, consuming various macronutrient containing meals is beneficial in regulating PPGR.

남녀 초등학생의 비만도에 따른 영양소 섭취 및 Glycemic Index, Glycemic Load에 관한 연구 (A Study on Nutrient Intakes, Glycemic Index, and Glycemic Load according to Obesity Index in Elementary School Students)

  • 배윤정;최미경
    • 동아시아식생활학회지
    • /
    • 제21권2호
    • /
    • pp.174-184
    • /
    • 2011
  • The purpose of this study was to evaluate nutrients intakes, glycemic index (GI), glycemic load (GL) according to obesity index in elementary school students. The study subjects included 229 elementary school students (boys=108, girls=121) who were divided into 3 groups consisting of an underweight group (obesity index<-10%, n=58), a normal weight group (10%${\leq}$ obesity index<10%, n=130) and an overweight group (obesity index${\geq}$10%, n=41) by their obesity index. The nutrient and food intakes data obtained by a 3-day food record were analyzed. Daily dietary GI and GL values were calculated from the 3-day food record. The average age of the subjects was 11.9 years. The mean daily energy intake was 2,186.8 kcal in the underweight group, 2,123.5 kcal in the normal weight group, and 2,174.2 kcal in the overweight group. The intakes of calcium and animal calcium per 1,000 kcal in the overweight group were significantly lower than in the underweight and normal weight groups (p<0.01, p<0.05), and fruit, egg and milk intakes in the overweight group were lower than those in the underweight group (p<0.05, p<0.05, p<0.05). The mean daily dietary GI of the underweight, normal weight, and overweight groups were 67.7, 68.4 and 69.5, respectively (p<0.05). The mean daily dietary GL of the underweight, normal weight, and overweight groups were 212.8, 208.1 and 213.3, respectively. The major food source of dietary GI and GL in the three groups was rice. Other major food sources of dietary GI were croquettes, hand-rolled noddle soups, instant noddles, milk, and rice cake. Dietary GI was not significantly correlated with weight, obesity or body mass index, when adjusted for energy, carbohydrate, and dietary fiber. However, GL adjusted to energy, carbohydrate and dietary fiber tended to correlate with obesity index (r=0.126, p=0.059). These results suggest that dietary GI and GL have possibility affecting obesity-related indicators in elementary school students.

Development and Evaluation of a Simulation Model for Dairy Cattle Production Systems Integrated with Forage Crop Production

  • Kikuhara, K.;Kumagai, H.;Hirooka, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권1호
    • /
    • pp.57-71
    • /
    • 2009
  • Crop-livestock mixed farming systems depend on the efficiency with which nutrients are conserved and recycled. Home-grown forage is used as animal feed and animal excretions are applied to cultivated crop lands as manure. The objective of this study was to develop a mixed farming system model for dairy cattle in Japan. The model consisted of four sub-models: the nutrient requirement model, based on the Japanese Feeding Standards to determine requirements for energy, crude protein, dry matter intake, calcium, phosphorus and vitamin A; the optimum diet formulation model for determining the optimum diets that satisfy nutrient requirements at lowest cost, using linear programming; the herd dynamic model to calculate the numbers of cows in each reproductive cycle; and the whole farm optimization model to evaluate whole farm management from economic and environmental viewpoints and to optimize strategies for the target farm or system. To examine the model' validity, its predictions were compared against best practices for dairy farm management. Sensitivity analyses indicated that higher yielding cows lead to better economic results but higher emvironmental load in dairy cattle systems integrated with forage crop production.

Recovery of nitrogen by struvite precipitation from swine wastewater for cultivating Chinese cabbage

  • Ryu, Hong-Duck;Lee, Han-Seul;Lee, Sang-Ill
    • 한국환경과학회지
    • /
    • 제24권10호
    • /
    • pp.1253-1264
    • /
    • 2015
  • This study assessed the fertilizing value of struvite deposit recovered from swine wastewater in cultivating Chinese cabbage. Struvite deposit was compared with commercial fertilizers: complex, organic and compost to evaluate the fertilizing effect of struvite deposit. Laboratory pot test obviously presented that the struvite deposit more facilitated the growth of Chinese cabbage than organic and compost fertilizers even though complex fertilizer was the most effective in growing Chinese cabbage. It was revealed that the growth rate of Chinese cabbage was simultaneously controlled by phosphorus (P) and potassium (K). Also, the nutrients such as nitrogen (N), P, K, calcium (Ca) and magnesium (Mg) were abundantly observed in the vegetable tissue of struvite pot. Specifically, P was the most abundant component in the vegetable tissue of struvite pot. Meanwhile, the utilization of struvite as a fertilizer led to the lower accumulation of chromium ($Cr^{6+}$) than other pots, except for compost fertilizer pots, and no detection of cadmium (Cd), arsenic (As) and nickel (Ni) in the Chinese cabbage. The experimental results proved that the optimum struvite dosage for the cultivation of Chinese cabbage was 2.0 g struvite/kg soil. On the basis of these findings, it was concluded that the struvite deposits recovered from swine wastewater were effective as a multi-nutrient fertilizer for Chinese cabbage cultivation.

미생물 공법에 의한 매립가스 황화수소 제거 및 바이오황 생산 (Application of the Microbial Process for Hydrogen Sulfide Removal and Bio-Sulfur Production from Landfill Gas)

  • 김영민;송효순;안효성;천승규
    • 신재생에너지
    • /
    • 제16권1호
    • /
    • pp.68-76
    • /
    • 2020
  • Operational testing of the THIOPAQ® facility that removes H2S from landfill gas was performed for 746 days. The average H2S removal efficiency was 99.4%, and the input quantities of air, NaOH, and nutrients per sulfur load were 13.1 ㎥/ton, 1.5 ㎥/ton, and 28.7 L/ton, respectively. The purity of the bio-sulfur produced from the facility was 94.8%, with 3.3% impurities, except for moisture. X-ray photoelectron spectroscopy showed that the compositional contents of amino acids and free amino acids of the bio-sulfur surface were 5,308 and 728 mg/kg, respectively. The mean particle size was 3.41 ㎛, which was much smaller than that of chemical sulfur. Based on these results, a high H2S removal rate of more than 97% is feasible, and high value-added bio-sulfur, which is used as a fungicide because of its hydrophilic characteristics and small size, can be obtained at this facility.

NPS-WET 모형을 이용한 인공습지의 수질정화효과 분석 (Analysis of Water-quality Improvement Efficiency of Constructed Wetland Using NPS-WET Model)

  • 이한필;정광욱;이복수;함종화;손영권
    • 한국물환경학회지
    • /
    • 제28권2호
    • /
    • pp.320-331
    • /
    • 2012
  • A combination system of catch canal and constructed wetland was designed and suggested to improve water quality in gagricultural region of lower Dong-jin river basin. In order to evaluate an water quality improvement efficiency of the designed combination system, the NPS-WET model was applied in this study. Simulation result of the NPS-WET shown that the nutrient load removal rate of constructed wetland was BOD, T-N, T-P and SS was 30.7~39.0%, 46~60%, 40.7~57.0% and 68.2~74.7%, respectively. Nutrients reduction of constructed wetland was higher in growing season than winter season because vital activity of microorganism, macrophyte and algae was augmented with high air and water temperature. Effluents from constructed wetland can affect water-quality of catch canal drains, especially, water-quality on junction point to Dong-jin river. Water-quality improvement in low-flowed catch canal (Un-san) was more significant than in high-flowed catch canal (Won-pyeong). In conclusion, a feasible design of constructed wetland is necessary to treat large quantity of receiving water. The NPS-WET is useful tool for assessing water-quality improvement efficiency using constructed wetland.

Struvite recovery from swine wastewater and its assessment as a fertilizer

  • Ryu, Hong-Duck;Lee, Sang-Ill
    • Environmental Engineering Research
    • /
    • 제21권1호
    • /
    • pp.29-35
    • /
    • 2016
  • This study evaluated the fertilizing value of struvite deposit recovered from swine wastewater in cultivating lettuce. Struvite deposit was compared to complex fertilizer, organic fertilizer and compost to evaluate the fertilizing effect of struvite deposit. Laboratory pot test showed that the struvite deposit better enhanced lettuce growth in comparison to commercial fertilizers. It was revealed that the growth rate of lettuce was simultaneously controlled by phosphorus (P) and magnesium (Mg). Moreover, nutrients such as nitrogen (N), P, K, calcium (Ca) and magnesium (Mg) were abundantly observed in the vegetable tissue of struvite pot. Meanwhile, struvite application led to the lower accumulation of mercury (Hg), lead (Pb), chromium ($Cr^{6+}$) and nickel (Ni). In addition, no detection of cadmium (Cd), arsenic (As) and nickel (Ni) in the lettuce tissue was observed in struvite application pots. The experimental results proved that the optimum struvite dosage for lettuce cultivation was 0.5 g struvite/kg soil. The column experiments clearly showed that ammonia nitrogen was more slowly released from struvite deposit than from complex fertilizer. Consequently, it was concluded that the struvite deposits recovered from swine wastewater were effective as a multi-nutrient fertilizer for lettuce cultivation.

군산 연안 해역에서의 부영양화 제어에 관한 연구 (A study on Eutrophication control in coastal area of Gunsan)

  • 김종구;정태주
    • 한국환경과학회지
    • /
    • 제12권9호
    • /
    • pp.957-966
    • /
    • 2003
  • Gunsan coastal area is one of region increasing pollution problems. To improve water quality, the reduction of these nutrients loads should be indispensible. In this study, the three-dimensional numerical hydrodynamic and ecosystem model were applied to analyze the processes affecting the eutrophication. In field survey, the average concentrations of dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus(DIP) at surface waters were found to be 0.43mg/$\ell$ and 0.03mg/$\ell$ respectively, which were exceeding second grade of water quality criteria. In hydrodynamic modelling, the comparison between the simulated and observed tidal ellipses showed fairly good agreement. The ecosystem model was calibrated with the observed data in study area. The simulated results of DIN were fairly good coincided with the observed values within relative error of 32.39%, correlation coefficient(r) of 0.99. In the case of DIP, the simulated results were fairly good coincided with the observed values within relative error of 24.26%, correlation coefficient(r) of 0.82. The simulations of DIN and DIP concentrations using ecosystem model were performed under the conditions of 20∼80% reductions for pollutant loading. At simulation results, concentration of DIN and DIP were reduced to 20∼80% and under 10% in case of the 80% reduction of pollutant loading, respectively.

영산호의 부영양화 평가를 위한 인부하모델의 검토 (A Study on Phosphorus Loading model for Eutrophication Response in the Yongsan Lake)

  • 류일광;이치영
    • 한국환경보건학회지
    • /
    • 제26권4호
    • /
    • pp.97-104
    • /
    • 2000
  • The purpose of this is made an examination of phosphorus loading model for eutrophication response in the Yongsan lake. For the model, we measured the total amount of nutrients derived from the Yongsan river watershed, inflow rate to the Yongsan lake, water quality, and water budget from January to December in 1999. The total amount of precipitation in the Yongsan river watershed was 4,951.7$\times$10$^{6}$ ㎥/y and inflow amount was 2,569.7$\times$10$^{6}$ ㎥/y, therefore the outflow rate of the Yongsan river watershed was 51.9%. The develop loading of total nitrogen was 86,928.1kg/d and that of total phosphorus was 22,007.6kg/d at the Yongsan river watershed, But, as the inflow loading of total nitrogen was 33,962kg/d and the inflow loading of total phosphorus was 2,218kg/d to the Yongsan lake. so each infolw rate was 39.0% and 10.1%. The hydraulic residence time was 34days, total phosphorus loading [L(P)] on the surface area was 23.398g/㎥/y, the hydraulic load( $Q_{s}$) of inflow water was 74.269m/y, the reserve rate of phosphorus in the lake was 0.359, and the settinh velocity of phosphorus was 0.114m/d at the Yongsan lake. Mathematical model of phosphorus loading to estimate the responses of eutrophication at the Yongsan lake is [ $P_{j}$] = 0.838 [L(P)/Q.(1+√ $T_{w}$)$^{-1}$ ] . ] . .

  • PDF

BONES HAVE EARS

  • Stephen C. Cowin
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.1055-1058
    • /
    • 2002
  • The movement of bone fluid from the region of the bone vasculature through the canaliculi and the lacunae of the surrounding mineralized tissue accomplishes three important tasks. First it transports nutrients to the osteocytes in the lacunae buried in the mineralized matrix. Second, it carries away the cell waste. Third, the bone fluid exerts a force on the cell process, a force that is large enough for the cell to sense. This is probably the basic mechanotrasduction mechanism in bone, the way in which bone senses the mechanical load to which it is subjected. The mechanism of bone fluid flow are described below with particular emphasis on mechanotransduction. Also described is the cell to cell communication by which higher frequency signals might be transferred, a potential mechanism in bone by which the small whole tissue strain is amplified so the bone cells can respond to it. One of the conclusions is that higher frequency low amplitude strains can maintain bone as effectively as low frequency low amplitude strains can maintain bone as effectively as low frequency high amplitude strains. This mechanism has many similarities with the mechanotransduction of acoustical signals in the ear. These conclusion leads to a paradigm shift in how to treat osteoporosis and how to cope with microgravity.

  • PDF