• Title/Summary/Keyword: Nutrients Removal

Search Result 306, Processing Time 0.027 seconds

Evaluation of the Impacts of Water Quality Management in Kyongan Stream Watershed using SWAT Model (SWAT 모델을 이용한 경안천 유역의 수질관리 영향 평가)

  • Jang, Jae-Ho;Yoon, Chun-Gyeong;Jung, Kwang-Wook;Kim, Hyung-Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.387-398
    • /
    • 2010
  • SWAT model would be applied to evaluate the pollutant removal capacity with various best management practices (BMPs) in Kyongan stream watershed which plays an important role in water quality conservation and improvement of Paldang reservoir. The methods for the representation of various BMPs scenarios with SWAT is developed and evaluated. Riparian buffer strip, agricultural conservation practices to reduce fertilizer, sediment, and nutrients occurring from farm field (Grassed swale, Contour farming/Parallel terrace, Field border, Farm retention pond, Grade stabilization structure), and washland such as wetland and pond to extend detention and improve water quality are represented in SWAT. And to represent the expansion of existing Waste Water Treatment Plants (WWTPs) in Soil and Water Assessment Tool (SWAT), reduction effect for point source pollutants was simulated. As the result of simulation, the removal rates of SS, TN, TP from scenarios of Kyongan stream watershed are the average annual SS yield by 5.2% to 69.2%, the average annual TN yield by 0.5% to 26.3%, and the average annual TP yield by 1.3% to 32.5%, respectively. This study has demonstrated that the SWAT is a very reliable and useful water quality and quantity assessment tool, and the BMPs representation in SWAT for watershed management is able to effectively simulate in Kyongan Stream watershed.

Hydraulic and hydrologic performance evaluation of low impact development technology

  • Yano, Kimberly Ann;Geronimo, Franz Kevin;Reyes, Nash Jett;Choe, Hye-Seon;Jeon, Min-Su;Kim, Lee-Hyeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.325-325
    • /
    • 2020
  • Low impact development (LID) is a widely used technology that aims to reduce the peak flow volume and amount of pollutants in stormwater runoff while introducing physicochemical, biological or a combination of both mechanisms in order to improve water quality. This research aimed to determine the effect of hydrologic factors in removing the pollutants on stormwater runoff by an LID facility. Monitored storm events from 2010-2018 were analysed to evaluate the hydraulic and hydrological performance of a small constructed wetland (SCW). Standard methods for the examination water and wastewater were employed to assess the water quality of the collected samples (APHA et al, 1992). Primary hydrologic data were obtained from the Korea Meteorological Administration. The recorded average rainfall intensity and antecedent dry days (ADD) of SCW were 5.26 mm/hr and 7 days respectively. During the highest rainfall event (27 mm/hr), the removal efficiency of SCW for all the pollutants was ranging from 67% to 91%. While on the lowest rainfall event (0.7 mm/hr), the removal efficiency was ranging from -36% to 62%. Rainfall intensity has a significant effect to the removal efficiencies of each facility due to its dilution factor. In addition to that, there was no significant correlation of ADD to the mean concentrations of pollutants. Generally, stormwater runoff contains significant amount of pollutants that can cause harmful effects to the environment if not treated. Also, the component of this LID facility such as pre-treatment zone, media filters and vegetation contributed to the effectivity of the LID facilities in reducing the amounts of pollutants present in stormwater runof.

  • PDF

Nitrite Removal by Autotrophic Denitrification Using Sulfur Particles (황입자를 이용한 독립영양탈질에서의 아질산성질소 탈질 조건 탐색)

  • Kang, Woo-Chang;Oh, Sang-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.221-226
    • /
    • 2010
  • Swine wastewater contains high amounts of organic matter and nutrients (nitrogen and phosphorus). The biological nitrogen removal can be achieved by nitrification and denitrification processes. Nitrification-denitrification can be performed via nitrite which is called as the short-cut process. This Short-cut process saves up to 25% of oxygen and 40% of external carbon during nitrification and denitrification. In this study, the batch tests were conducted to assess the different parameters for the nitrite sulfur utilizing denitrification, such as alkalinity, temperature, initial nitrite concentration, and dissolved oxygen. The experimental results showed that the nitrite removal efficiency of the reactor was found to be over 95% under the optimum condition ($30^{\circ}C$ and sufficient alkalinity). Autotrophic nitrate denitrification was inhibited at low alkalinity condition showing only 10% removal efficiency, while nitrite denitrification was achieved over 95%. The nitrite removal rates were found similar at both $20^{\circ}C$ and $30^{\circ}C$. In addition, nitrite removal efficiencies were inhibited by increasing oxygen concentration, but sulfate concentration increased due to sulfur oxidation under an aerobic condition. Sulfate production and alkalinity consumption were decreased with nitrite compared those with nitrate.

Evaluation of Pollutant Removal Efficiency through Field Test-Bed Experiment in the Rural Small Stream (저수지 유입하천 현장적용실험을 통한 수질정화효율 평가)

  • Choi, Sun Hwa;Oh, Jong Min;Kim, Tae-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1135-1143
    • /
    • 2014
  • This study was carry out to evaluate of water purification in oxidation pond with filamentous algae mat. It is the water treatment process in the small rural streams to remove the organic materials and nutrients. We used the filamentous algae mat (FAM) which selectively predominate the filamentous algae to prevent the additional contamination by algae outflow, and we conducted a experiment on the water treatment process using the aquatic plants such as Eichhornia crassipes. The removal efficiencies (%) of water quality parameters were SS 80.9%, COD 74.6%, TN 76.8%, TP 84.4%, DTN 93.8% and DTP 98.3%, respectively. Temperature, a effect factor, was $21.8{\pm}5.9^{\circ}C$ during the operating period, according to temperature had no effect on the removal efficiencies of pollutants. Hydraulic retention time (HRT) strongly correlated with removal efficiencies (%) of SS and TP having r=0.414 (p<0.005), r=0.446 (p<0.005), respectively, and when HRT was 5day had highly removal efficiency (%) in SS and TP. TN and TP removal efficiency increased with ratio decreasing in both COD/TN and COD/TP of Influent.

Evaluation of various nutrients removal models by using the data collected from stormwater wetlands and considerations for improving the nitrogen removal (인공습지에서 영양소 제거 설계모델 검토 및 질소제거 개선방안에 대한 고찰)

  • Park, Kisoo;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.90-102
    • /
    • 2017
  • In this study, various types of nutrient models were tested by using two tears's water quality data collected from the stormwater wetland in Korea. Based on results, most important factor influencing nitrogen removal was hydraulic loading rate, which indicates that surface area of wetland is more important than its volumetric capacity, and model proposed by WEF was found to give a least error between measured and calculated values. For the phosphorus, in case assuming a power relationship between rate constant and temperature, the best prediction result were obtained, but temperature was most sensitive parameter affecting phosphorus removal. In addition, denitrification was always a limiting step for the nitrogen removal in this particular wetland mostly due to the lack of carbon source and high dissolved oxygen concentration. In this paper, several alternatives to improve nitrogen removal, including proper arrangement and designation of wetland elements and use of floating plants or synthetic fiber mat to control oxygen level and to capture the algal particles were proposed and discussed.

Anaerobic Treatment of Piggery Slurry - Review -

  • Chynoweth, D.P.;Wilkie, A.C.;Owens, J.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.607-628
    • /
    • 1999
  • The swine waste industry is growing rapidly along with the world human population. The trend is toward more concentrated piggeries with numbers of herds in the thousands. Associated with these increased herds are large quantities of wastes, including organic matter, inorganic nutrients, and gaseous emissions. The trend in swine waste management is toward treatment of these wastes to minimize negative impact on the health and comfort of workers and animals and the atmosphere, water, and soil environments. Treatment of these wastes has traditionally involved land application, lagoons, oxidation ditches, and conventional batch and continuously stirred reactor designs. More sophisticated treatment systems are being implemented, involving advanced anaerobic digester designs, integrated with solids separation, aerobic polishing of digester effluents, and biological nutrient removal. This review discusses the present and future role of anaerobic processes in piggery waste treatment with emphasis on reactor design, operating and performance parameters, and effluent processing.

A study on development of basic natural system for polluted streams using wasted concrete and Oenanthe javanica (미나리와 폐콘크리트를 이용한 하천정화공법의 기초 연구)

  • Kim, Jwa-Kwan;Yoon, Sung-Yoon
    • Journal of Wetlands Research
    • /
    • v.2 no.1
    • /
    • pp.59-67
    • /
    • 2000
  • The aim of this study is to identify the role of this natural treatment system, which consists of Oenanthe javanica and wasted concrete as bio-media. Therefore, it was designed to experiment water quality, BOD, SS, T-N, T-P to recognize the efficiency of treatment system with one biofilter tank using wasted concrete and vegetation bed using Oenanthe javanica. It was also designed to compare two different biofilter reactors, which are air lift and upflow methods. In the result, it was demonstrated that upflow method is more efficient system to control water quality of polluted streams. The vegetation bed using Oenanthe javanica has the treatment efficiency of 41 % (BOD), 52 % (COD), 60% (SS), 36 % (T-P), 70 % ($NH_4-N$). It was therefore proved that removal rates of nutrients are not so good except $NH_4-N$ concentration with nitrification.

  • PDF

Recycling of Casts as an Adsorbent for Phosphorous Removal (인제거를 위한 흡착제로써 분변토 재활용)

  • 손희정;김은호;이용희
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.76-81
    • /
    • 1998
  • The technology of removing phosphorous, considered as one of the most important control nutrients causing eutrophication in various water bodies, have been investigated by many researchers. In this study, casts which can be obtained from the vermicomposting of mixing sewage sludge and cow manure, were used as an adsorbent, and their effects of several physical/chemical factors on the efficiencies of phosphorous adsorption were examined by batch tests. Generally, it could be showed that the efficiencies of phosphorous adsorption were very influenced by cast dosage, temperature and agitation speed. If we reflected the adsorption capacity(k) and adsorption intensity(1/n) of Freundlich isotherm, we couldn't consider casts as a good adsorbent for removing phosphorous. But, because casts were relatively excellent in cation exchange, in point of waste recycling, we could know that they were capable of removing phosphorous. The SEM observation revealed that the evident variations were hardly seen, but particle sizes of cast were relatively bigger and showed forms of smaller plate than before.

  • PDF

Utilization of Osmotic Dehydration as Pretreatment prior to Drying (건조전처리로서 삼투건조의 이용)

  • 윤광섭
    • Food Science and Preservation
    • /
    • v.5 no.3
    • /
    • pp.305-314
    • /
    • 1998
  • In the drying process, many undesirable physicochemical changes occur that influence dried food product qualities. Pretreatments method is used to reduce the deterioration of dried food product qualities such as color, flavor, texture, rehydration ability and retention of nutrients. The methods of pretreatments are blanching, chemical treatment and osmotic dehydration. Osmotic dehydration is a water removal process which is based on placing foods in a concentrated osmotic solution or in a dry osmotic material. A large number of process variables have a significant effect on process and final product quality. In order to improve final product quality it is necessary to know the role of each process variable and understand the mecanisms throughout the process. Osmotic dehydration is a valuable processing tool with great future in minimal processing of fruits and vegetables.

  • PDF

Evaluation of Laver Growth Rate using Pyroligneous Acid (목초액유기산을 사용한 김의 성장률 평가)

  • Kim, U-Hang;Jo, Seong-Taek
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.11a
    • /
    • pp.105-108
    • /
    • 2004
  • Organic acid is made with carbonized organic acid that is produced from charcoal burning process. It is evaluated whether carbonized organic acid is able to removed Enteromorpha in the laboratory and Porphra aquaculture farm test. The optimum condition for Enteromorpha removal are revealed ten times dilution and ten second immersion. The mortality rate of Enteromorpha is $95\%$ and diatom-detaching rate is $100\%$ by the organic acid treatment. On the other hand, the mortality rate of Porphra is lower than $5%\$. It was measured that nitrogen was 0.175 mg/l and phosphorus was 0.0158 mg/l. Therefore, Concentration of nutrients were lower than being necessary to Porphra growth. Growth rate of Porphra was $12\%$ increased by organic acid treatment with carbonized organic acid added nutrient.

  • PDF