• Title/Summary/Keyword: Nutrient loss

Search Result 335, Processing Time 0.032 seconds

Estimation of Transpiration Rate with a Metering Pump and its Application in Soilless Culture System (정량펌프를 이용한 무토양재배시스템의 증산량 추정 및 그 응용)

  • Son, Jung-Eek;Park, Jong-Seok
    • Horticultural Science & Technology
    • /
    • v.16 no.1
    • /
    • pp.25-26
    • /
    • 1998
  • Nutrient supplying by a metering pump often produces the inaccuracy in the rate of inflow than expected. In this study, we developed the transpiration estimation system using the metering pump to measure the continuous supplying rate as well as to estimate the accurate transpiration rate. The system showed the stable characteristics by eliminating the fluctuations in the head loss of nutrient tank. The direct proportionality between the supplying time and the supplied nutrient solution was obtained. The exact correlation between the integrated solar radiation and the transpiration rate using the system was calculated, and correlation coefficients between the two factors were 0.98 in the NFT system and 0.92 in the aggregate system. This results suggest that the integrated solar radiation was an important factor to directly decide the supplying volume of nutrient solution in soilless culture system. The deveolped system using the metering pump in the study was able to control the supply of the nutrient solution to the crops adjusting to the variation of solar radiation.

  • PDF

Nutrient dynamics in decomposing litter from four selected tree species in Makurdi, Benue State, Nigeria

  • Okoh, Thomas;Edu, Esther
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.376-384
    • /
    • 2019
  • Background: Nutrient release during litter decomposition was investigated in Vitex doniana, Terminalia avecinioides, Sarcocephallus latifolius, and Parinari curatellifolius in Makurdi, Benue State Nigeria (January 10 to March 10 and from June 10 to August 10, 2016). Leaf decomposition was measured as loss in mass of litter over time using the decay model Wt/W0 = e-kd t, while $Kd=-{\frac{1}{t}}In({\frac{Wt}{W0}})$ was used to evaluate decomposition rate. Time taken for half of litter to decompose was measured using T50 = ln 2/k; while nutrient accumulation index was evaluated as $NAI=(\frac{{\omega}t\;Xt}{{\omega}oXo})$. Results: Average mass of litter remaining after exposure ranged from 96.15 g, (V. doniana) to 78.11 g, (S. lafolius) in dry (November to March) and wet (April to October) seasons. Decomposition rate was averagely faster in the wet season (0.0030) than in the dry season (0.0022) with P. curatellifolius (0.0028) and T. avecinioides (0.0039) having the fastest decomposition rates in dry and wet seasons. Mean residence time (days) ranged from 929 to 356, while the time (days) for half the original mass to decompose ranged from 622 to 201 (dry and wet seasons). ANOVA revealed highly significant differences (p < 0.01) in decomposition rates and exposure time (days) and a significant interaction (p < 0.05) between species and exposure time in both seasons. Conclusion: Slow decomposition in the plant leaves implied carbon retention in the ecosystem and slow release of CO2 back to the atmosphere, while nitrogen was mineralized in both seasons. The plants therefore showed effectiveness in nutrient cycling and support productivity in the ecosystem.

Effectiveness of Nutrition Education on Dietary Habits and Diet Quality in the Weight Loss and Weight Gain Groups in College Women (영양교육에 의한 체중감소군과 체중증가군의 식습관 및 식사의 질 평가 - 여대생을 대상으로 -)

  • Lee, Seung-Hee;Chang, Nam-Soo
    • Journal of Nutrition and Health
    • /
    • v.40 no.5
    • /
    • pp.463-474
    • /
    • 2007
  • This study attempted to evaluate the effectiveness of nutrition education especially high nutrient density diet, which promotes low carbohydrate, high protein and fiber. Sixty nine college students participated in the 8 week weight management program with nutrition education. After the program, forty six experienced a small amount of weight loss (WL group, 1.3 kg), but twenty three did not (WG group). The WL group's dietary habits and diet quality improved significantly. The INQ of nutrients and MAR significantly increased only in the WL group. The total DQI-I score significantly increased from 71.1 to 75.3 in the WL group, but it did not in the WG group. The total dietary habit scores significantly increased in both groups, but the changes in the dietary habit scores were greater than the WG group in the WL group. After the program, total cholesterol and triglyceride level decreased significantly in the WL group (p < 0.05). These results show that nutrition education which focuses on a nutrient density diet could help improve dietary habits, diet quality, total cholesterol, and the triglyceride level in college women.

Weight Loss and Nutrient Dynamics during Leaf Litter Decomposition of Quercus variabilis and Pinus densiflora at Mt. Worak National Park

  • NamGung, Jeong;Han, A-Reum;Mun, Hyeong-Tae
    • Journal of Ecology and Environment
    • /
    • v.31 no.4
    • /
    • pp.291-295
    • /
    • 2008
  • Weight loss and nutrient dynamics of oak and pine leaf litter during decomposition were investigated from December 2005 through June 2008 at Mt. Worak National Park as a part of National Long-Term Ecological Research Program in Korea. The decay constant (k) of oak and pine leaf litter were 0.314 and 0.217, respectively. After 30 months decomposition, remaining weight of oak and pine leaf litter was 45.5% and 58.1%, respectively. Initial C/N ratio of oak and pine leaf litter was 53.4 and 153.0, respectively. Carbon % of initial oak and pine leaf litter was similar with each other; however, nitrogen content of initial oak leaf litter (0.85%) was greater than that of initial pine leaf litter (0.33%). N and P concentration in both decomposing leaf litter increased significantly during decomposition. There was no net N and P mineralization period in decomposing pine leaf litter. K, Ca and Mg concentration in both decomposing leaf litter showed different pattern with those of N and P. After 30 months decomposition, remaining nutrients in oak and pine leaf litter were 97.7 and 216.2% for N, 123.2 and 216.5% for P, 39.3 and 44.8% for K, 47.9 and 40.6% for Ca, 30.7 and 51.2% for Mg, respectively.

Nutrient Losses from a Paddy Field

  • Cho, Jae-Young;Han, Kang-Wan
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.258-263
    • /
    • 2000
  • The study was carried out to investigate the nutrient losses at a paddy field located at the southwest of central Korea from May 1, 1997 to April 30, 1998. The studying area was 10 ha. The amounts of nutrients loaded by runoff water were measured as follows. The total-N was 1,031 and $61kg\;10ha^{-1}$ during the irrigation and non-irrigation periods, respectively. The total amount of N from both periods was $1,092kg\;10ha^{-1}\;yr^{-1}$. The total-P was 23 and $2kg\;10ha^{-1}$ during the irrigation and non-irrigation periods, respectively. The total amount of P from both periods was $25kg\;10ha^{-1}\;yr^{-1}$. For percolationloss, the losses of total-N, ammonia-N, nitrate-N, and total-P were 167,30,122, and $3kg\;10ha^{-1}$, respectively. The respective loss ratios of N and P by runoff water were 55.2 and 11.9%, while the loss ratios of N and P by percolationwere 8.4 and 1.4%.

  • PDF

Nutrient Leaching from Leaf Litter of Cropland Agroforest Tree Species of Bangladesh

  • Hasanuzzaman, Md.;Hossain, Mahmood
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.2
    • /
    • pp.208-217
    • /
    • 2014
  • Leaf litter is the main and quick source of organic matter and nutrient to the soil compared to other parts of litter. This study focused on the nutrients (N, P and K) leaching from leaf litter of Melia azadirachta, Azadirachta indica, Eucalyptus camaldulensis, Swietenia macrophylla, Mangifera indica, Zizyphus jujuba, Litchi chinensis, Albizia saman, Artocarpus heterophyllus, Acacia auriculiformis, Dalbergia sissoo and Khaya anthotheca as the common cropland agroforest tree species of Bangladesh. About (9 to 35) % of initial mass was lost, while Electric Conductivity (EC) and TDS (Total Dissolved Solid) of leaching water increased to (573 to 3,247) ${\mu}S/cm$ and (401 to 2,307) mg/l respectively after 192 hours of leaching process. Mass loss (%) of leaf litter, EC and TDS of leaching water showed significant (ANOVA, p<0.05) curvilinear relationship with leaching time. Initial concentration of NH4, PO4 and K in leaching water was found to increase significantly (p<0.05) up to 48/72 hours and then remained almost constant at later stages (48/72 to 192 hours). Mass loss of leaves; EC, TDS, $NH_4$, $PO_4$ and K in leaching water was varied also significantly (ANOVA, p<0.05) among the studied tree species. All the tree species showed similar pattern of nutrients (K>N>P) release during the leaching process. The highest $NH_4$ (4,097 ppm) and potassium (8,904 ppm) concentration was found for M. azadirachta while the highest $PO_4$ (1,331 ppm) concentration was found for E. camaldulensis in the leaching water. Among the studied tree species, M. azadirachta, A. indica, D. sissoo, E. camaldulensis and Z. jujuba was selected as the best tree species with respect to nutrient leaching.

Prediction of Nitrogen Loading from Forest Stands in Eutrophication of Lake (호소 부영양화에 있어서 산림임반으로부터 질소부하 평가를 위한 조사)

  • Chung, Doug-Young;Lee, Young-Han;Lee, Jin-Ho;Park, Mi-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.430-437
    • /
    • 2010
  • The continuous release of nutrient sources into natural water resource can be a continuing problem in eutrophication, as well as severe reductions in water quality. However, any desirable measure is not developed yet even though so many researches and efforts have been done to solve this problem. Forest as one of troublesome nonpoint sources may contributes most to nutrient loading, but the loading of N and P from forest in order to grasp the eutrophication potential of nonpoint sources has not been evaluated. The nutrient sources from the organic litter accumulated on the surface of forest soils can be a critical factor in continuity of eutrophication of a lake. The decomposition rate of litter can be estimated to predict release of N and P from the forest stand. The loss rate of nitrogen is complicated but depends in part upon the physical matrix of the element. Therefore, long-term nutrient budget and flux estimates at stand would be useful tools in calculating potential nutrient fluxes into the watercourses in a sustainable way. The present investigation can give insight to the actual situation of the eutrophication potentials of forest as the practical nonpoint sources.

Temporal and Spatial Variation of Nutrient Concentrations in Shallow Pore Water in Intertidal Sandflats of Jeju Island (제주도 사질 조간대 공극수중 영양염류의 시·공간적 변화)

  • Hwang, Dong-Woon;Kim, Hyung-Chul;Park, Jihye;Lee, Won-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.704-715
    • /
    • 2012
  • To examine temporal and spatial variation in salinity and nutrients in the shallow pore water of intertidal sandflats, we measured salinity and nutrient concentrations (dissolved inorganic nitrogen [DIN], phosphorus [DIP], and silicate [DSi]) in pore water of the intertidal zone along the coastline of Jeju Island at two and/or three month intervals from May 2009 to December 2010. Geochemical parameters (grain size, ignition loss [IL], chemical oxygen demand [COD], and acid volatile sulfur [AVS]) in sediment were also investigated. The surface sediments in intertidal sandflats of Jeju Island were mainly composed of sand, slightly gravelly sand and gravelly sand, with a range of mean grain size from 0.5 to 2.5 ${\O}$. Concentrations of IL and COD in sediment were higher along the eastern coast, as compared to the western coast, due to differences in biogenic sediment composition. Salinity and nutrient concentrations in pore water were markedly different across time and space during rainy seasons, whereas concentrations were temporally and spatially more stable during dry seasons. These results suggest that salinity and nutrient concentrations in pore water depend on the advective flow of fresh groundwater. We also observed an imbalance of the DIN/DIP ratio in pore water due to the influence of contaminated sources of DIN. In particular, nutrient concentrations during rainy and dry seasons were characterized by high DIN/DIP ratios (mean-127) and low DIN/DIP ratios (mean-10), respectively, relative to the Redfield ratio (16) in offshore seawater. Such an imbalance of DIN/DIP ratios in pore water can affect the coastal ecosystem and appears to cause outbreaks of benthic seaweed along the coastline of Jeju Island.