• Title/Summary/Keyword: Nutrient loads

Search Result 86, Processing Time 0.023 seconds

Comparison of Pollutant Load Discharge Characteristics with Chemical Fertilizer and Organic Compost Applications (화학비료와 유기비료 시비후 오염배출 농도 특성 비교)

  • Lyou, Chang-Woun;Shin, Yong-Cheol;Heo, Sung-Gu;Choi, Ye-Hwan;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.490-495
    • /
    • 2005
  • Organic compost has been widely applied to the cropland because it has been thought as Environmentally Sound Agriculture (ESA) in Korea. However, many field researches have been done to investigate water quality impacts of organic compost uses, compared to those from chemical fertilizer applications. It was found that pollutant loads from organic compost applied croplands were higher than those from chemical fertilizer applied areas. However, there might be other unknown factors affecting the results since the experiments were performed at the outside fields. In this study, indoor rainfall experiments using the Norton rainfall simulator systems were done to minimize and exclude errors from unknown sources by controlling soil characteristics, rainfall amount, rainfall intensity, and fertilizer treatments. The amounts of surface runoff and groundwater percolated from 10% and 20% slope plots were measured and water quality samples were collected and analyzed for BOD, COD, and T-P. Flow weighted mean concentration (FWMC) values were computed to assess effects of different fertilizer treatments. It was found that average concentration values of BOD were 5.57 mg/L from chemical fertilizer treated plot and 8.08 mg/L from organic compost treated plots. For 10% slope, FWMC BOD values from organic compost treated plots were higher by 29.9% than those from chemical fertilizer treated plots. For 20% slope, FWMC BOD values from organic plots were higher by 38.8% than those from chemical fertilizer plots. FWMC BOD values for 20% slope plots were higher than those from those for 10% slope plots. The similar trends were found for COD and T-P. In Korea, excessive use of organic compost has caused extremely high levels of organic matter contents at the cropland. Organic compost are usually applied to the cropland to improve soil quality, while chemical fertilizer is applied to help crop growth. Since organic compost is very slow in releasing its nutrients to the soil, farmers usually apply excessive organic compost for immediate effects and maximum crop yields, which has been causing soil and water quality degradations. Therefore, thorough investigations for better nutrient management plans are needed to develop the ESA strategy in Korea.

  • PDF

Water and mass balance analysis for hydrological model development in paddy fields

  • Tasuku, KATO;Satoko, OMINO;Ryota, TSUCHIYA;Satomi, TABATA
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.238-238
    • /
    • 2015
  • There are demands for water environmental analysis of discharge processes in paddy fields, however, it is not fully understood in nutrients discharge process for watershed modeling. As hydrological processes both surface and ground water and agricultural water managements are so complex in paddy fields, the development of lowland paddy fields watershed model is more difficult than upland watershed model. In this research, the improvement of SWAT (Soil and Water Assessment Tool) model for a paddy watershed was conducted. First, modification of surface inundated process was developed in improved pot hole option. Those modification was evaluated by monitoring data. Second, the monitoring data in river and drainage channel in lowland paddy fields from 2012 to 2014 were analyzed to understand discharge characteristics. As a case study, Imbanuma basin, Japan, was chosen as typical land and water use in Asian countries. In this basin, lowland paddy fields are irrigated from river water using small pumps that were located in distribution within the watershed. Daily hydrological fluctuation was too complex to estimate. Then, to understand surface and ground water discharge characteristics in irrigation (Apr-Aug) and non-irrigation (Sep-Mar) period, the water and material balance analysis was conducted. The analysis was composed two parts, watershed and river channel blocks. As results of model simulation, output was satisfactory in NSE, but uncertainty was large. It would be coming from discharge process in return water. The river water and ground water in paddy fields were exchanged each other in 5.7% and 10.8% to river discharge in irrigation and non-irrigation periods, respectively. Through this exchange, nutrient loads were exchanged between river and paddy fields components. It suggested that discharge from paddy fields was not only responded to rainfall but dynamically related with river water table. In general, hydrological models is assumed that a discharge process is one way from watershed to river. However, in lowland paddy fields, discharge process is dynamically changed. This function of paddy fields showed that flood was mitigated and temporally held as storage in ground water. Then, it showed that water quality was changed in mitigated function in the water exchange process in lowland paddy fields. In future, it was expected that hydrological models for lowland paddy fields would be developed with this mitigation function.

  • PDF

Removal Efficiency of Non-point Source Pollutants through Constructed Wetland: Case Study of Annaecheon Wetland in Daecheong Reservoir (인공습지를 이용한 호소 유입 비점오염물질 제거 효율 평가: 대청호 안내천 습지 사례 분석)

  • Pyeol-Nim Park;Young-Cheol Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.291-304
    • /
    • 2023
  • Harmful algal blooms (HABs) have become an increasing concern in terms of human health risks as well as aesthetic impairment due to their toxicity. The reduction of water pollutants, especially nutrients from non-point sources in a reservoir watershed, is fundamental for HABs prevention. We investigated the pollutant removal efficiencies of a constructed wetland to evaluate its feasibility as a method for controlling non-point sources located in the Annaecheon stream within the Daecheong Reservoir watershed. The overall removal efficiencies of pollutants were as follows: BOD 14.3%, COD 17.9%, SS 50.0%, T-N 19.0%, and T-P 35.4%. These results indicate that constructed wetlands are effective in controlling pollutants from non-point sources. The seasonal variation in removal efficiency depended on the specific pollutants. The removal efficiencies of BOD, COD, and T-N were stable throughout the year, except during winter, which might have been influenced by lower microorganism activity. In contrast, T-P showed a consistent removal efficiency even during the winter season, suggesting that the wetland can reduce external phosphorus loading to the reservoir. Regarding the effects of pollutant loadings on removal efficiency, the effluent concentrations of all pollutants were significantly decreased compared to those in the influent in case of middle and high loadings. This demonstrates that constructed wetlands can handle high pollutant loads, including the initial runoff during rainfall, to prevent reservoir eutrophication. Despite the various strengths of wetland water purification, there are limitations as passive treatment. Therefore, more case studies should be conducted to suggest optimum operational conditions for constructed wetlands, taking into consideration reservoir-specific characteristics.

Effects of Natural Wetland in Reducing Nutrient Loadings from Rice Culture - Free-Range Ducks (RCFD) Paddy fields in Korea (오리농업재배 소유역내 자연습지가 오리농업시 유출되는 영양염류 부하량 저감에 미치는 영향)

  • Ko, Jee-Yeon;Lee, Jae-Saeng;Jung, Ki-Youl;Choi, Young-Dae;Yun, Eul-Soo;Woo, Koan-Sik;Seo, Myung-Chul;Nam, Min-hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.249-256
    • /
    • 2009
  • The amount of nutrients from the effluents of rice culture - free-range ducks (RCFD) paddy fields and the effects of natural wetlands located at downstream of RCFD on water quality and aquatic plants was evaluated. This was carried out in a 61.9 ha paddy fields in Ulsan, Gyeongnam, where downstream is a 5.9 ha natural wetland, 61% of which was covered with well-developed aquatic plants. The amounts of T-N and T-P in the effluent from paddy field with RCFD were 13.7 and $2.5kg\;ha^{-1}$, respectively, which is 1.2~2.5 times higher than those observed in conventional rice culture practice. The amount of runoff from the RCFD area, calculated using the revised TANK model, was $543mm\;ha^{-1}$ with 808 kg of T-N and 130 kg of T-P during rice cultivation period. The dominant aquatic plants in the wetland includes Phragmites communis, Zizania latifolia, Persicaria thunbergii. etc. The nutrient contents of the aquatic plants which amounted to 761 kg of T-N and 103 kg of T-P were almost equivalent to 94% and 79% of the T-N and T-P in RCFD and CRC effluent. Therefore, the use and maintenance of wetlands in RCFDs area could be a good solution to management the non-point pollution from duck feces in RCFD paddy fields.

Small-Scale Pond Effects on Reducing Pollutants Load from a Paddy Field (논의 양분유출 저감을 위한 저류지 효과)

  • Kim, Min-Kyeong;Kwon, Soon-Ik;Jung, Goo-Bok;Hong, Seong-Chang;Chae, Mi-Jin;Yun, Sun-Gang;So, Kyu-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.355-358
    • /
    • 2013
  • BACKGROUND: Water-born pollution loads by agricultural non-point source (NPS) pollution are expected to become intensified due to ongoing precipitation change. Therefore, it is essential to develop a best management practice (BMP) that is suitable to agricultural environments in Korea. This study aimed to develop an environmental-friendly BMP to reduce NPS pollution load by agricultural activities. An eco-friendly way, small drainage pond, was suggested in this study to avoid direct drainage of agricultural runoffs and eventually reduce the amount of pollutants discharged into the surrounding aqua-environment. METHODS AND RESULTS: A small pond ($12m^2$) was constructed at the corner of a rice paddy field ($1,715m^2$) located in Suwon, Korea. Water was allowed to drain only via a small drainage pond. Sampling was repeatedly made at two locations, one from an entrance and the other from an exit of a pond, during the rice cultivation period (May to October, 2012). Generally, sampling was made only when runoff water drained through a pond, such as during and/or after rain (irrigation). The water quality analysis showed that all quality parameters (SS, $COD_{Mn}$, T-N, and T-P) were improved as water passed through the pond. The amount of runoff water was reduced by 96~100%. Suspended solids and COD concentrations was reduced by 79.3% and 45.6%, respectively. In case of T-N and T-P concentrations, the reduction rates were 52.2% and 60.5%, respectively and the amount of T-N and T-P were reduced by 16.3~73.0% and 15.4~70.1%, respectively. CONCLUSION(S): Our data implies that agricultural NPS pollution from rice paddy fields can be effectively managed when an appropriate drainage water management practice is imposed. In this paper, it was suggested that an installation of a small drainage pond can be effective to prevent not only the nutrient loss from rice fields but also pollutant discharge to surrounding water environments.

Development and Application of Multi-Functional Floating Wetland Island for Improving Water Quality (수질정화를 위한 다기능 인공식물섬의 개발과 적용)

  • Yoon, Younghan;Lim, Hyun Man;Kim, Weon Jae;Jung, Jin Hong;Park, Jae-Roh
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.221-230
    • /
    • 2016
  • Multi-functional floating wetland island (mFWI) was developed in order to prevent algal bloom and to improve water quality through several unit purification processes. A test bed was applied in the stagnant watershed in an urban area, from the summer to the winter season. For the advanced treatment, an artificial phosphorus adsorption/filtration medium was applied with micro-bubble generation, as well as water plants for nutrient removal. It appeared that the efficiency of chemical oxygen demand (COD) and total phosphorus (T-P) removal was higher in the warmer season (40.9%, 45.7%) than in the winter (15.9%, 20.0%), and the removal performance (suspended solid, chlorophyll a) in each process differs according to seasonal variation; micro-bubble performed better (33.1%, 39.2%) in the summer, and the P adsorption/filtration and water plants performed better (76.5%, 59.5%) in the winter season. From the results, it was understood that the mFWI performance was dependent upon the pollutant loads in different seasons and unit processes, and thus it requires continuous monitoring under various conditions to evaluate the functions. In addition, micro-bubbles helped prevent the formation of anaerobic zones in the lower part of the floating wetland. This resulted in the water circulation to form a new healthy aquatic ecosystem in the surrounding environment, which confirmed the positive influence of mFWI.