• Title/Summary/Keyword: Nutrient Input

Search Result 188, Processing Time 0.023 seconds

Spatial and Temporal Variability of Phytoplankton in Relation to Environmental Factors in Youngil Bay (영일만 수질환경과 식물플랑크톤의 시·공간적 분포)

  • Shim, Jeong-Min;Kwon, Ki-Young;Jeong, Hee-Dong;Choi, Yong-Kyu;Kim, Sang-Woo
    • Journal of Environmental Science International
    • /
    • v.22 no.12
    • /
    • pp.1683-1690
    • /
    • 2013
  • We investigated the spatial and temporal variations of phytoplankton in Youngil Bay as well as the effect of water physico-chemical parameters. Water samples at three stations were collected and measured monthly from May to November in 2010. The taxa of phytoplankton observed in this study were classified as 33 Bacillariophyceae, 23 Dinophyceae, 1 Euglenophyceae, 2 Crysophyceae and 1 Cryptophyceae. The highest biomass of phytoplankton was observed at inner station in September, which was characterized high concentration of dissolved inorganic phosphate(DIP) in surface water after rainfall. Nutrient concentrations, chlorophyll-a and phytoplankton biomass values showed the marked trend to decrease from the inner bay to the outer bay. Pearson's correlation co-efficient between salinity and other water parameters including chlorophyll-a, pH and DIP showed the strong negative relationship r=-0.82, r=-0.78 and r=-0.75 (p<0.01), respectively. These results indicate that the water quality of Youngil Bay could be stimulated by nutrient enriched input from Hyeogsan River discharge, and the spatial and temporal distribution of phytoplankton biomass principally limited to DIP concentration from Hyeogsan river.

Loading Characteristics and Environmental Changes in Closed Coastal Water (폐쇄성 해역의 오염부하 특성과 해역환경변화)

  • Lee Chan-Won;Kwon Young-Tack;Yang Ki-Sup;Jang Pung-Guk;Han Sung-Dae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.60-70
    • /
    • 1998
  • Masan Bay is a typical enclosed coastal sea and receving body of discharges from Masan city and Changwon city. A POTW(Publicly Owned Treatment Works) started operation from November 1993 when the population of drainage area increased abcent 1.0 million and the effluent from this Plant has being discharged to the enclosed sea where is located at 15km distance from inner Masan Bay. Thus the inflow pattern to Masan Bay has been changed. The main objective of this research is to evaluate the relationship between urban wastewater discharge and water qualify change in a typical coastal zone. It is necessary a) to evaluate the change of input loadings, b) to determine the effect on water quality changes, and c) to find the respective importance of improvement options that must be controlled in the wastewater treatment plant. It was concluded that the sea water quality has being adversely affected by the discharge of insufficiently treated urban wastewater and the nutrient removal in wastewater treatment was very important and urgent.

  • PDF

The Kinetic Analysis on Organic Substrate Removal and Nitrification in Anoxic-Anaerobic-Aerobic Process (무산소-혐기-호기법에서 유기기질제거와 질산화의 동역학적 해석)

  • Chae, Soo Kwon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.689-696
    • /
    • 2007
  • Kinetic analysis was important to develope the biological nutrient removal process effectively. In this research, anoxic-anaerobic-aerobic system was operated to investigate kinetic behavior on the nutrient removal reaction. Nitrification and denitrification were important microbiological reactions of nitrogen. The kinetics of organic removal and nitrification reaction have been investigated based on a Monod-type expression involving two growth limiting substrates : TKN for nitrification and COD for organic removal reaction. The kinetic constans and yield coefficients were evaluated for both these reactions. Experiments were conducted to determine the biological kinetic coefficients and the removal efficiencies of COD and TKN at five different MLSS concentrations of 5000, 4200, 3300, 2600, and 1900 mg/L for synthetic wastewater. Mathematical equations were presented to permit complete evaluation of the this system. Kinetic behaviors for the organic removal and nitrification reaction were examined by the determined kinetic coefficient and the assumed operation condition and the predicted model formulae using kinetic approach. The conclusions derived from this experimental research were as follows : 1. Biological kinetic coefficients were Y=0.563, $k_d=0.054(day^{-1})$, $K_S=49.16(mg/L)$, $k=2.045(day^{-1})$ for the removal of COD and $Y_N=0.024$, $k_{dN}=0.0063(day^{-1})$, $K_{SN}=3.21(mg/L)$, $k_N=31.4(day^{-1})$ for the removal of TKN respectively. 2. The predicted kinetic model formulae could determine the predicted concentration of the activated sludge and nitrifier, investigate the distribution rate of input carbon and nitrogen in relation to the solid retention time (SRT).

Long-term Application Effect of Silicate Fertilizer on Soil Silicate Storage and Rice Yield

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Ko, Byong-Gu;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.819-825
    • /
    • 2016
  • Monitoring of soil fertility and crop productivity in long-term application of silicate fertilizers is necessary to use fertilizers efficiently. This study was conducted to investigate effects of continuous application of silicate fertilizer for rice cultivation from 1969 to 2014. The treatments were no silicate fertilizer treatments (N, NC, NPK, and NPKC) and silicate fertilizer treatments (N+S, NC+S, NPK+S, and NPKC+S). The 46-yr input of $2\;ton\;ha^{-1}yr^{-1}$ of silicate fertilizer increased pH 0.6 ~ 1.1 and exchangeable Ca $2.0{\sim}2.4cmol_c\;kg^{-1}$ in silicate fertilizer treatments (N+S, NC+S, NPK+S, and NPKC+S) compared with no silicate fertilizer treatments (N, NC, NPK, and NPKC) because silicate fertilizer included Ca component. Also, available silicate concentrations of silicate fertilizer treatments (N+S, NC+S, NPK+S, and NPKC+S) increased $169mg\;kg^{-1}$ compared to no silicate fertilizer treatments. In Period II ('90~'14), the mean annual Si field balance varied from 62 to $175kg\;ha^{-1}yr^{-1}$ in silicate fertilizer treatments, indicating continuous accumulation of soil Si. Silicon uptake and grain yield of rice had greater differences between N treatment and N+S treatment than other treatments. This showed that the application of silicate fertilizer had greater effect in nutrient-poor soils than in proper nutrient soils. Thus the application of silicate fertilizer led to improvement the fertility of soil and increasement of rice production for the lack of soil nutrients.

Predicting nutrient excretion from dairy cows on smallholder farms in Indonesia using readily available farm data

  • Al Zahra, Windi;van Middelaar, Corina E.;de Boer, Imke J.M;Oosting, Simon J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.2039-2049
    • /
    • 2020
  • Objective: This study was conducted to provide models to accurately predict nitrogen (N) and phosphorus (P) excretion of dairy cows on smallholder farms in Indonesia based on readily available farm data. Methods: The generic model in this study is based on the principles of the Lucas equation, describing the relation between dry matter intake (DMI) and faecal N excretion to predict the quantity of faecal N (QFN). Excretion of urinary N and faecal P were calculated based on National Research Council recommendations for dairy cows. A farm survey was conducted to collect input parameters for the models. The data set was used to calibrate the model to predict QFN for the specific case. The model was validated by comparing the predicted quantity of faecal N with the actual quantity of faecal N (QFNACT) based on measurements, and the calibrated model was compared to the Lucas equation. The models were used to predict N and P excretion of all 144 dairy cows in the data set. Results: Our estimate of true N digestibility equalled the standard value of 92% in the original Lucas equation, whereas our estimate of metabolic faecal N was -0.60 g/100 g DMI, with the standard value being -0.61 g/100 g DMI. Results of the model validation showed that the R2 was 0.63, the MAE was 15 g/animal/d (17% from QFNACT), and the RMSE was 20 g/animal/d (22% from QFNACT). We predicted that the total N excretion of dairy cows in Indonesia was on average 197 g/animal/d, whereas P excretion was on average 56 g/animal/d. Conclusion: The proposed models can be used with reasonable accuracy to predict N and P excretion of dairy cattle on smallholder farms in Indonesia, which can contribute to improving manure management and reduce environmental issues related to nutrient losses.

Dietary Status of the Elderly from the Low Socioeconomic Group on the Suburbs of Jeonju - Focussed on Integration of Family Planning - (도시근교(都市近郊) 노년층(老年層)의 영양실태조사(營養實態調査) - 가족계획(家族計劃)을 통합(統合)하여 -)

  • Kim, In-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 1980
  • The purpose of this study was to assess dietary intake and food habits of low-income person aged 60 years or eldary. The hundred fifty persons from the suburbs of Jeonju were surveyed between August 1 to 20,1979. Results were as follows: Family environment Approximately 90% of elderly persons surved, lived with their children and grand-children: 5.2% together as a couple; and 4.4%, widowed, lived alone. Nearly 40% of the households has a average monthly incomes of W40,000 to W100,000. Average food expediture accounted for 50 to 70% of total monthly income, thus indicating that the subject families belonged to the lowest socioeconomic level. As pocket money, 74.5% of male subjects had more than W5,100 per month. whereas, 51.4% of female had less than W5,000. Anthropometric measurements: 97.6% of subjects has heights greater than 90% of the Korean standard for their age group, whereas 45.2% of the subjects were 60 to 89% of standard weight. 88% had an arm circumferences only 60 to 89% of the standard. Nutrient intake: Intake of the majority of nutrients was below the recommended allowances, especially for energy, protein, calcium and iron. The energy input ratio of carbohydrate: protein: fat was 73.1-80.9. 13.3-15.8: 4.5-11.5, showing very heavy dependence on carbohydrates for energy needs. The contribution of animal protein was 24.3% of total protein intake, indicating an improper protein diet. Other factors influenced on the nutrient intake: Poor teeth, illness, and poor appetite were always associated with inadequate intake of energy and nutrients. The larger the family size, the lesser intake of nutrients was observed among those elderly.

  • PDF

Ecological impact of fast industrialization inferred from a sediment core in Seocheon, West Coast of Korean Peninsula

  • Choi, Rack Yeon;Kim, Heung-Tae;Yang, Ji-Woong;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.212-221
    • /
    • 2020
  • Background: Rapid industrialization has caused various impacts on nature, including heavy metal pollution. However, the impacts of industrialization vary depending on the types of industrializing activity and surrounding environment. South Korea is a proper region because the rapid socio-economical changes have been occurred since the late nineteenth century. Therefore, in this study, we estimate the anthropogenic impacts on an ecosystem from a sediment core of Yonghwasil-mot, an irrigation reservoir on the western coast of Korea, in terms of heavy metal concentrations, nutrient influx, and pollen composition. Results: The sediment accumulation rate (SAR) determined by 210Pb geochronology showed two abrupt peaks in the 1930s and 1950s, presumably because of smelting activity and the Korean War, respectively. The following gradual increase in SAR may reflect the urbanization of recent decades. The average concentrations of arsenic (As), copper (Cu), and lead (Pb) during the twentieth century were > 48% compared to those before the nineteenth century, supporting the influence of smelting activity. However, at the beginning of the twenty-first century, the As, Cu, and Pb concentrations decreased by 19% compared to levels in the twentieth century, which is coincident with the closure of the smelter in 1989 and government policy banning leaded gasoline since 1993. The pollen assemblage and nutrient input records exhibit changes in vegetation cover and water level of the reservoir corresponding to anthropogenic deforestation and reforestation, as well as to land-use alteration. Conclusions: Our results show that the rapid socio-economic development since the twentieth century clearly affected the vegetation cover, land use, and metal pollutions.

The evaluation of Spectral Vegetation Indices for Classification of Nutritional Deficiency in Rice Using Machine Learning Method

  • Jaekyeong Baek;Wan-Gyu Sang;Dongwon Kwon;Sungyul Chanag;Hyeojin Bak;Ho-young Ban;Jung-Il Cho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.88-88
    • /
    • 2022
  • Detection of stress responses in crops is important to diagnose crop growth and evaluate yield. Also, the multi-spectral sensor is effectively known to evaluate stress caused by nutrient and moisture in crops or biological agents such as weeds or diseases. Therefore, in this experiment, multispectral images were taken by an unmanned aerial vehicle(UAV) under field condition. The experiment was conducted in the long-term fertilizer field in the National Institute of Crop Science, and experiment area was divided into different status of NPK(Control, N-deficiency, P-deficiency, K-deficiency, Non-fertilizer). Total 11 vegetation indices were created with RGB and NIR reflectance values using python. Variations in nutrient content in plants affect the amount of light reflected or absorbed for each wavelength band. Therefore, the objective of this experiment was to evaluate vegetation indices derived from multispectral reflectance data as input into machine learning algorithm for the classification of nutritional deficiency in rice. RandomForest model was used as a representative ensemble model, and parameters were adjusted through hyperparameter tuning such as RandomSearchCV. As a result, training accuracy was 0.95 and test accuracy was 0.80, and IPCA, NDRE, and EVI were included in the top three indices for feature importance. Also, precision, recall, and f1-score, which are indicators for evaluating the performance of the classification model, showed a distribution of 0.7-0.9 for each class.

  • PDF

Evaluation of Nutrient Discharges from Greenhouses with Flooding Soil Surface at Two Different Locations (입지조건이 다른 시설재배지에서 담수처리에 따른 양분 용탈량 평가)

  • Kim, Min-Kyeong;Roh, Kee-An;Ko, Byong-Gu;Park, Seong-Jin;Jung, Goo-Bok;Lee, Deog-Bae;Kim, Chul-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.315-321
    • /
    • 2010
  • Greenhouse soil cultivated with excessive compost and chemical fertilizer has been an issue to deteriorate soil and water quality in the environment. The objective of this study was to evaluate the nutrient outflow by desalting method, flooding soil surface, after vegetable cropping in greenhouse soils. Field experiment from July to September 2008, was conducted to quantify greenhouse locations, i.e. alluvial plain and local valley. The changes of desalinization in both locations were higher as the amounts of irrigated and drained water were increased. Particularly, the ratio of desalinization in alluvial plain was much higher (66.7%) than the one in local valley (45.6%). However, $NH_4$-N contents of local valley soil during the flooding were higher than in those of alluvial plain. This was caused by high total nitrogen and organic matter in local valley soil than those in alluvial plain soil. With comparing to the input and output loads of T-N and T-P in greenhouses with local valley and alluvial plain soils, the output loads of nutrients were larger than the input loads of nutrients. This result showed that the flooding soil surface can be a good treatment to desalinize greenhouse soils. However, this conclusion remained that the flooding water containing high N and P concentrations might cause the secondary effect on the quality of streams and groundwater since excessive nutrient concentrations can be the main cause of eutrophication problem in aquatic environment.

Dry Matter Yield and Nutrients Uptake of Sorghum${\times}$Sudangrass Hybrid Grown with Different Rates of Livestock Manure Compost (가축분퇴비 시용 수준에 따른 수수${\times}$수단그라스 교잡종의 건물생산 및 양분 흡수)

  • Lim, Sang-Sun;Lee, Sang-Mo;Lee, Seung-Heon;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.458-465
    • /
    • 2010
  • To investigate the growth and nutrient uptake response of sorghum${\times}$sudangrass ($S{\times}S$) hybrid to different rate of livestock manure compost, a field experiment was conducted in the experimental grassland of Chonnam National University. Six treatments were laid out in a randomized block design with triplicates; control (no input), synthetic fertilizer (20 g N $m^{-2}$ and 20 g $P_2O_5\;m^{-2}$), compost 1 (3.4 g N $m^{-2}$ and 3.6 g $P_2O_5\;m^{-2}$), compost 2 (6.8 g N $m^{-2}$ and 7.2 g $P_2O_5\;m^{-2}$), compost 4 (13.4 g N $m^{-2}$ and 14.4 g $P_2O_5\;m^{-2}$), and compost 6 (20.2 g N $m^{-2}$ and 21.6 g $P_2O_5\;m^{-2}$). Ninety days after treatment, above-ground parts of the plants were harvested and measured for dry matter yield (DMY) and amounts of nutrients (N and P) uptake. Synthetic fertilizer application achieved the greatest DMY (2.4 kg $m^{-2}$) and nutrient uptake (38.3 g N $m^{-2}$ and 15.3 g $P_2O_5\;m^{-2}$). Increasing compost application rate tended to enhance DMY accumulation and nutrient uptake (P<0.01), but DMYs of compost 4 (1.9 kg $m^{-2}$) and 6 (1.8 kg $m^{-2}$) treatments were not different. Therefore, it was suggested that application compost alone may not achieve DMY of $S{\times}S$ hybrid compatible to synthetic fertilizer application. As nutrient uptake efficiency data showed that availability of compost P could be better than SF, it might be a strategy to apply compost as P source with supplementary N application such as liquid manure, SF or green manure if necessary considering availability of N input and the yield goals.