• 제목/요약/키워드: Nutrient Elements

Search Result 160, Processing Time 0.036 seconds

Influence of Varied Pre-planting N Levels in a Medium on the Growth of Chinese Cabbage and Pak-choi Seedlings in Paper Pot Raising (종이포트 육묘시 기비로 혼합된 질소 시비수준이 배추와 청경채 생장에 미치는 영향)

  • Kim, Hyun Cheul;Park, Myong Sun;Jang, Yoonah;An, Sewoong;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.342-351
    • /
    • 2019
  • The optimum N concentrations incorporated as pre-planting nutrient charge fertilizer were determined for seedling raising using cylindrical paper pots. A root medium was formulated by blending of peat moss (particles smaller than 2.84 mm were 80-90%) and perlite (1 to 3 mm) with the ratio of 7:3 (v/v). The treatment N concentrations incorporated during the root medium formulation were adjusted to 0, 150, 250, 500, and $750mg{\cdot}L^{-1}$ and the concentrations of essential nutrients except N were equal in all treatments. After making of paper pots and putting into the 40-cell tray, the seeds of Chinese cabbage ('Chunmyeong Bom Baechu') and pak-choi ('Hanog cheonggyeongchae') were sown. During the raising of seedlings, weekly analysis of medium pH, EC and concentrations of inorganic elements were conducted. After 21 and 20 days after seed sowing of Chinese cabbage and pak-choi, the growth of the above-ground parts were measured and contents of inorganic elements in the plant tissues were analyzed. During the growing period, pH of the root media rose gradually and the EC decreased rapidly at week 3. The pH of root media at harvest was in the range of 5.3 to 5.9 in Chinese cabbage and 4.93 to 5.39 in pak-choi. Growth of the aboveground parts in terms of fresh and dry weight in both the plants were the highest in the $250mg{\cdot}L^{-1}$ N treatment and the lowest in the control treatment. The elevation of pre-planting N concentrations in root medium resulted in the increase of tissue N content and decrease of P, Ca, and Mg contents. The regression equation derived from the influence of varied pre-planting N concentrations on dry weight of above-ground tissue were $y=-0.0036x^2+0.0021x+0.0635$ ($R^2=0.9826$) in Chinese cabbage and $y=-0.16x^2+0.0009x+0.032$ ($R^2=0.991$) in pak-choi. When the low critical concentration of pre-plant N is taken at the point where dry weight of above-ground tissue is 10% less than maximum (0.40 g in Chinese cabbage and 0.16 g in pak-choi), those point are 0.36 g and 0.144 g per plant in Chinese cabbage and pak-choi, respectively. The lower critical N concentrations of root media calculated from the regression equations are $196mg{\cdot}L^{-1}$ for Chinese cabbage and $187mg{\cdot}L^{-1}$ for pak-choi. These results indicate that optimum pre-plant N concentrations for seedling raising using paper pots are in the range of 196 to $250mg{\cdot}L^{-1}$ for Chinese cabbage and 187 to $250mg{\cdot}L^{-1}$ for pak-choi.

Optimization of Growth Medium and Poly-$\beta$-hydroxybutyric Acid Production from Methanol in Methylobacterium organophilum (메탄올로부터 Methylobacterium organophilum에 의한 Poly-$\beta$-hydroxybutyric Acid의 생산과 배지성분의 최적화)

  • Choi, Joon-H;Kim, Jung H.;M. Daniel;J.M. Lebeault
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.392-396
    • /
    • 1989
  • Methylobacterium organophilum, a facultative methylotroph was cultivated on a methanol as a sole carbon and energy source. The cell growth was affected by the various components of minimal synthetic medium and the medium composition was optimized with 0.5% (v/v) methanol at pH 6.8 and at 3$0^{\circ}C$. The maximum specific growth rate of M. organophilum was achieved to 0.26 hr$^{-1}$ in the optimized medium which has following composition: Methanol, 0.5% (v/v):(NH$_4$)$_2$SO$_4$, 1.0g/l:KH$_2$PO$_4$, 2.13g/l:KH$_2$PO$_4$, 1.305g/ι:MgSO$_4$.7$H_2O$. 45g/l and trace elements (CaCl$_2$.2$H_2O$, 3.3mg:FeSO$_4$.7$H_2O$, 1.3mg:MnSO$_4$.4$H_2O$, 130$\mu\textrm{g}$:ZnSO$_4$.5$H_2O$, 40$\mu\textrm{g}$:Na$_2$MoO$_4$.2$H_2O$, 40$\mu\textrm{g}$:CoCl$_2$.6$H_2O$, 40$\mu\textrm{g}$:H$_3$BO$_3$, 30$\mu\textrm{g}$ per liter). By the limitation of nitrogen and deficiency of Mn$^{+2}$ or Fe$^{+2}$, the cell growth was significantly repressed. Methanol greatly repressed the cell growth and the complete inhibition was observed at concentration above 4% (v/v). In order to overcome the methanol inhibition and to prevent the methanol limitation, intermittent feeding of methanol was conducted by a D.O.-stat technique. PHB production by M. organophilum was stimulated by deficiency of nutrients such as NH$_{4}^{+}$, SO$_{4}^{-2}$, $Mg^{+2}$, $K^{+}$, or PO$_{4}^{-3}$ in the medium. The maximum PHB content was obtained as 58% of dry cell weight under deficiency of potassium ion in the optimized synthetic medium.

  • PDF

Influence of Application Rates of Dolomitic Lime in the Acid Substrate on the Reduction of Bicarbonate Injury during Vegetative Growth of the 'Seolhyang' Strawberry (산성 혼합상토의 고토석회 시비수준이 영양생장 중인 '설향' 딸기의 중탄산 피해 경감에 미치는 영향)

  • Lee, Hee Su;Choi, Jong Myung;Kim, Dae Young;Kim, Seung Yu
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.220-227
    • /
    • 2016
  • The objective of this research was to investigate the influence of application rates of dolomitic lime in the acid substrate on the mitigation of high bicarbonate damage in 'Seolhyang' strawberry. For this purpose, an acid substrate was formulated by mixing of sphagnum peat moss and pine bark with the ratio of 5:5 (v/v). The pH, EC and CEC of the substrate analyzed before application of dolomite were 4.07, $0.46dS{\cdot}m^{-1}$, and $91.3cmol+/kg^{-1}$, respectively. To adjust the pH of substrate, various amounts of dolomitic lime [$CaMg(CO_3)_2$] such as 0 (control), 1, 2, 3, and $4g{\cdot}L^{-1}$ were added during substrate formulation. Then, seedlings with 3 leaf stage were transplanted as mother plants and those were fed with Hoagland solution containing $240mg{\cdot}L^{-1}$ of the $HCO_3{^-}$. The growth parameters of mother plants 140 days after transplanting, such as plant height, chlorophyll content, and fresh weight were the highest in the treatments of 2 and $3g{\cdot}L^{-1}$ of dolomitic lime. The physiological disorders in mother plants were not observed in the 1, 2 and $3g{\cdot}L^{-1}$ treatments, but the symptoms of Ca, K and B deficiencies were observed in the 0 and $4g{\cdot}L^{-1}$ treatments. During the propagation period, the number of daughter plants derived from each mother plant were 21.0, 29.5, 35.8, 27.3 and 16.0 in the treatments of 0, 1, 2, 3 and $4g{\cdot}L^{-1}$, respectively. The substrate pH during cultivation of mother plants were maintained at appropriate levels for the 1 and $2g{\cdot}L^{-1}$ treatments, whereas it was the highest in $4g{\cdot}L^{-1}$ treatment. The contents of macro- and micro-elements in the above ground tissue were the highest in $2g{\cdot}L^{-1}$ and the lowest in $4g{\cdot}L^{-1}$ lime treatments. Above results suggest that the bicarbonate injury originated from ground water can be mitigated by adjusting the amount of dolomitic lime incorporated into the acid substrate.

Effect of Slaked-Lime and Straw on the Soil pH, Nutrient Uptake and Yield of Rice in Akiochi Paddy Field (추락답(秋落沓)에 있어서 소석회(消石灰)와 생고시용(生藁施用)이 토양(土壤) pH, 수도(水稻)의 양분흡수(養分吸收) 및 수량(收量)에 미치는 영향(影響))

  • Ahn, Su-Bong
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.2
    • /
    • pp.145-151
    • /
    • 1976
  • This study was conducted to determine the effect of slaked lime and straw used on the soil pH in the flooded condition and yield of rice grown in AKIOCHI paddy field and their residual effects on the rice plants. The results obtained were summarized as follow: when lime and straw were applied, there was on the average 41% of yield increase over plots treated with three elements of chemical fertilizers. When lime plus straw were used, the growth rate at later stage of rice plant was prominent. Damage due to helminthosporium and blast were found less, the rate of lower-leaf death was low, and grain number, per head, filled grain ratio, and weight of rice grain were higher than control. When lime plus straw were used, higher amount of silicate, calcium, nitrogen and potassium was found in the plants at heading stage. The residual effects of lime plus straw were 20% in the first year, about 10% in the second year and 5% in the third year, respectively. Soil pH was affected by both straw and slaked lime, and it was fixed about 8 days after applying in the flooded condition. The following formulae was suggested from the results in the flooded conditions. $$pH=5.5293+8.6007X_1+2.7836X_2-{6.7422X_1}^2-{1.8522X_2}^2-7.000X_1X_2$$ ($X_1$=slaked lime, $X_2$=straw)

  • PDF

Hydrogeochemical Research on the Characteristic of Chemical Weathering in a Granitic Gatchment (水文化學的 資料를 통한 花崗岩質 流域의 化學的 風化特性에 關한 硏究)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.1
    • /
    • pp.1-15
    • /
    • 1993
  • This research aims to investigate some respects of chemical weathering processes, espcially the amount of solute leaching, formation of clay minerals, and the chemical weathering rate of granite rocks under present climatic conditions. For this purpose, I investigated geochemical mass balance in a small catchment and the mineralogical composition of weathered bedrocks including clay mineral assemblages at four res-pective sites along one slope. The geochemical mass blance for major elements of rock forming minerals was calculated from precipitation and streamwater data which are measured every week for one year. The study area is a climatically and litholo-gically homogeneous small catchment($3.62Km^2$)in Anyang-shi, Kyounggi-do, Korea. The be-drock of this area id Anyang Granite which is composed of coarse-giained, pink-colored miner-als. Main rock forming minerals are quartz, K-Feldspar, albite, and muscovite. One of the chracteristics of this granite rock is that its amount of Ca and Mg is much lower than other granite rock. The leaching pattern in the weathering profiles is in close reltion to the geochemical mass balance. Therefore the removal or accumulation of dissolved materials shows weathering patterns of granite in the Korean peninsula. Oversupplied ions into the drainage basin were $H^+$, $K^+$, Fe, and Mn, whereas $Na^2+$, $Mg^2+$, $Ca^2+$, Si, Al and $HCO-3^{-}$ were removed from the basin by the stream. The consumption of hydrogen ion in the catchment implies the hydrolysis of minerals. The surplus of $K^+$ reflects that vegetation is in the aggravation stage, and the nutrient cycle of the forest in study area did not reach a stable state. And it can be also presumed that the accumulation of $K^+$ in the top soil is related to the surplus of $K^+$. Oversupplied Fe and Mn were presumed to accumulate in soil by forming metallic oxide and hydroxide. In the opposite, the removal of $Na^+$, Si, Al resulted from the chemical weathering of albite and biotite, and the amount of removal of $Na^+$, Si, Al reflected the weathering rate of the bedrock. But $Ca^2+$ and $Mg^2+$ in stream water were contaminated by the scattered calcareous structures over the surface. Kaolinite is a stable clay mineral under the present environment by the thermodynamical analysis of the hydrogeochemical data and Tardy's Re value. But this result was quite different from the real assemblage of clay miner-als in soil and weathered bedrock. This differ-ence can be explained by the microenvironment in the weathering profile and the seasonal variation of climatic factors. There are different clay forming environments in the stydy area and these differences originate from the seasonal variation of climate, especially the flushing rate in the weathering profile. As it can be known from the results of the analysis of thermodynamic stability and characteristics of geochemical mas balance, the climate during winter and fall, when it is characterized by the low flushing rate and high solute influx, shows the environmental characteristics to from 2:1 clay minerals, such as illite, smectite, vermiculite and mixed layer clay minerals which are formed by neoformation or transformation from the primary or secondary minerals. During the summer and spring periods, kaoli-nite is a stable forming mineral. However it should consider that the other clay minerals can transformed into kaolinite or other clay minerals, because these periods have a high flushing rte and temperature. Materials which are directly regulated by chemical weathering in the weathered bedrock are $Na^+$, Si, and Al. The leaching of Al is, however, highly restricted and used to form a clay mineral, and that of Si falls under the same category. $Na^+$ is not taked up by growing veget ation, and fixed in the weathering profile by forming secondary minerals. Therefore the budget of $Na^+$ is a good indicator for the chemical weathering rate in the study area. The amount of chemical weathering of granite rocks was about 31.31g/$m^2+$/year based on $Na^+$ estimation.

  • PDF

Studies on the Effects of Hydrogen Fluoride Gas in Paddy Rice and Weeds at Fluorine Damaged Site (불화수소(弗化水素)가스에 의(依)한 수도(水稻) 및 잡초(雜草)의 피해(被害) 조사연구(調査硏究))

  • Kim, Bok-Young;Cho, Jae-Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.2 no.2
    • /
    • pp.98-102
    • /
    • 1983
  • The hydrogen fluoride gas generated from making the cement hardener injured the plants growing at the neighbour field. This investigation was conducted on sample analysis of hydrogen fluoride gas damage plants which included the ratios of destroyed leaves, damage symptoms, and nutrient elements in paddy rice and weeds. The results obtained were as follows; 1) The ratio of destroyed leaves at near HF source was very high reaching about 95% at 100m, 65% at 500m, 5% at 2㎞, respectively. 2) The necrosis was the characteristic symptom of fluoride injury on rice plant and occurred predominantly at the tip and margins of damage leaf. It developed along the tip and margins of leaves with a dull, gray-green, water soaked discoloration. 3) The fluorine content of tip and margins of damaged rice leaves were 1,600 ppm, 3 to 20 times higher than that of center part and it ranged from 130 to 242.5 ppm in weed leaves, but from 10 to 15 ppm in normal weed leaves. 4) The contents of calcium, potassium, silicon, iron and manganese were higher in tip and margins than in the center of rice damage leaves. 5) The Cocculus trilolous. D.C was the most resistant plant to HF gas than any other plant growing in this site, while wild berry and aralia tree belong to most sensitive plant group.

  • PDF

Photosynthesis, Growth and Yield Characteristics of Peucedanum japonicum T. Grown under Aquaponics in a Plant Factory (식물공장형 아쿠아포닉스에서 산채 갯기름의 광합성, 생육 및 수량 특성)

  • Lee, Hyoun-Jin;Choi, Ki-Young;Chiang, Mae-Hee;Choi, Eun-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.67-76
    • /
    • 2022
  • This study aimed to determine the photosynthesis and growth characteristics of Peucedanum japonicum T. grown under aquaponics in a plant factory (AP) by comparing those grown under hydroponic cultivation system (HP). The AP system raised 30 fishes at a density of 10.6 kg·m-3 in a 367.5 L tank, and at HP, nutrient solution was controlled with EC 1.3 dS·m-1 and pH 6.5. The pH level ranged from 4.0 to 7.1 for the AP system and 4.0 to 7.4 for the HP system. The pH level in the AP began to decrease with an increase in nitrate nitrogen (NO3-N) and lasted bellower than pH 5.5 for 15-67 DAT. It was found that ammonium nitrogen (NH4-N) continued to increase even under low pH conditions. EC was maintained at 1.3 to 1.5 dS·m-1 in both systems. The concentration of major mineral elements in the fish tank was higher than that of the hydroponics, except for K and Mg. There was no significant difference in the photosynthesis characteristics, but the PIABS parameters were 30.4% lower in the AP compared to the HP at the 34DAT and 12.0% lower at the 74DAT. There was no significant difference in the growth characteristics, but the petiole length was 56% longer in the leaf grown under the AP system. While there was no significant difference in the fresh and dry weights of leaf and root, the leaf area ratio was 36.43% higher in the AP system. All the integrated results suggest that aquaponics is a highly-sustainable farming to safely produce food by recycling agricultural by-products, and to produce Peucedanum japonicum as much as hydroponics under a proper fish density and pH level.

Forage and TDN Yield of Several Winter Crops at Different Clipping Date (사료용 맥류 품종의 예취 시기별 청예 및 건물수량과 영양가 비교)

  • Hwang, Jong-Jin;Sung, Byung-Ryeol;Youn, Kyu-Bok;Ahn, Wan-Sik;Lee, Jong-Ho;Chung, Kyu-Yong;Kim, Young-Sang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.3
    • /
    • pp.301-309
    • /
    • 1985
  • This experiment was conducted to know a substantial body of information about the differences of the important forage characteristics; green fodder yield, dry matter yield, TDN%, TDN yield and so forth of the seven cultivars selected as the forage crops (Rye, Triticale, Wheat and Barley) depending on the specific times of cutting stage, on the Wheat and Barley Research Institute from October, 1983 to June, 1984, and the results summarized as follows. Green fodder yield & dry matter weight, when clipped at 20, 30 April and 10 May, of varieties Homil #2 showed the most yielding capacity, but when clipped at 20 May, Suweon#8 (triticale) showed the most green fodder yield whereas Homil #1 the most significant dry matter weight. Plant height, in the cases of Paldanghomil, Homil #1 & Homil #2, showed distinctly longer than that of Bunong, Suweon #8 & Suweon #9 and continued to grow even after the heading date. Dry matter ratio increased with time (Dry matter yield/green fodder yield x100). TDN % decreased but TDN yield increased with time but Homil #1, Homil #2 and Paldanghomil showed relatively the higher values. In the elements of nutrient of cell wall, Suweon #8 & Bungong among 7 cultivars have good quality. The reasonable clipping date of wheat &barley as green fodder crops are 10 May to 20 May, but if clipped before 10 May and 20 May, Homil #2 and Suweon #8 became the promising forage crops, respectively.

  • PDF

Selection and appropriate culture conditions of antagonistic bacterium Bacillus altitudinis HC7 against button mushroom cobweb disease caused by Cladobotryum mycophilum (양송이버섯 솜털곰팡이병균(Cladobotryum mycophilum)에 대한 길항미생물 Bacillus altitudinis HC7의 선발 및 적정 배양조건)

  • Chan-Jung Lee;Hye-Sung Park;Seong-Yeon Jo;Gi-Hong An;Ja-Yun Kim;Kang-Hyo Lee
    • Journal of Mushroom
    • /
    • v.22 no.2
    • /
    • pp.60-66
    • /
    • 2024
  • This study was conducted to selection and investigate appropriate conditions for mass production of antagonistic microbes to control cobweb disease caused by Cladobotryum mycophilum. A grampositive bacterium was isolated from spent substrate of Agaricus bisporus and showed significant antagonistic activity against Cladobotryum mycophilum. The bacterium was identified as Bacillus altitudinis. based on the cultural, biochemical and physiological characteristics, and 16S rRNA sequence. The isolate is saprophytic, but not parasitic nor pathogenic to cultivated mushroom whereas it showed strong inhibitory effects against C. mycophilum cells in vitro. The control efficacy of B. altitudinis HC7 against cobweb disease of C. mycophilum was up to 78.2% on Agaricus bisporus. The suppressive bacterium may be useful for the development of biocontrol system. To define the appropriate conditions for the mass production of the Bacillus altitudinis HC7, we have investigated appropriate culture conditions and effects of various nutrient source on the bacterial growth. The appropriate initial pH and temperature were determined as pH 6.0 and 30℃, respectively. The appropriate concentration of medium elements for the growth of pathogen inhibitor bacterium(Bacillus altitudinis HC7) was determined as follows: 3.0% soluble startch, 10% soytone, 1.0% (NH4)2HPO4, 1.0 mmol KCl, and 0.5% L-asparagine.

Agronomical studies on the major environmental factors of rice culture in Korea (수도재배의 주요환경요인에 관한 해석적 조사연구)

  • Yung-Sup Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.49-82
    • /
    • 1965
  • For the stable and high yields of low-land rice in Korea, the characteristics of rice plant for the vegetative and physiological responses, plant type formation, and yield components have been studied in order to obtain the fundamental data for the improvement of cultural practices, especially for the ideal fertilizer application. Furthermore the environmental conditions in Korea including temperatures, light, precipitation, and soil conditions have been compared in the broad sense with those in Japan, and the application of nitrogen, phosphorus, potassium, silicate and other micro-nutrients were described in relation to the characteristics of environmental conditions for the improvement of fertilizer application. 1. The average yield of polished-rice per 10 are in Korea is about 204 kg and this values are much less than those in Japan and Taiwan where they produce 77% to 13% more than in Korea. The rate of yield increase a year in Korea is 4.2 kg, but in Japan and Taiwan the rates of yield increase a year are 81 % and 62%, respectively. It was also found that the coefficient of variation of yield is 7.7% in Korea, 6.7% in Japan and 2.5% in Taiwan. This means that the stability of producing rice in Korea is very low when compared with those in Japan and Taiwan. 2. It was learned from the results obtained from the 'annual yield estimation experiment' that there are big differences in the respect of plant type formations between rice crops grown in Japan and Korea. The important differences found were as follows: (1) The numbers of spikelets per 3.3 square meters are 891 in Korea and 1, 007 in Japan(13% more than in Korea). (2) The numbers of tillers per 3.3 square meters at the stage of maximum tillering are 1, 150 in Korea, but in Japan they showed 19% more than in Korea. (3) The ratio of effective tillers to total tillers is 77.5% in Korea and 74.7% in Japan, which seems to be higher in Korea than in Japan. But the ratio in Korea is very low when considered the numbers of total tillers in both countries. (4) The ratio of grain to straw is 85.4% in Korea and 96.3% in Japan. 3. The average temperatures during the growing season at the area of Suwon, Kwangjoo and Taegu are almost same as those in the district of Jookokoo(Fookoo yama) in Japan, i.e., the temperatures during the rice-growing season in Korea are similar to those in the southern-warm regions of Japan. 4. Considering the minimum temperatures at the stage of limiting transplanting, 13$^{\circ}C$, the time of transplanting might be 30 to 40 days earlier than presently practicing transplanting time, which comes around June 10. 5. The temperatures during the vegetative growth in Korea were higher than those temperatures that needed in the protein synthesis which ate the main metabolism during this stage. However, the temperatures at the time of reproductive growth was lower than the temperatures that needed in the sugar assimilation which is main metabolism in this stage. In this point of view, it might be considered that the proper time of growing rice plant in Korea would be rather earlier. 6. The temperatures and the day light conditions at the time of first tillering stage of rice plant, when planted as presenting transplanting practices, are very satisfactory, but the poor day light length, high temperatures and too wet conditions in the time of last-tillering stage(mid or last July) might cause the occurrence of disease such as blast. 7. The heading stage of rice plants at each region through nations when planted as presently practicing method comes when the day light length is short. 8. It was shown that the accumulated average air-temperature at the time of maturing stage was not enough and the heading time was too late, when considered the annual deviations of mean temperatures and low minimum temperatures. 9. The nitrogen content of each plant part at the each growing stage was very high at the stage of vegetative growth when compared with the nitrogen content at the stage of reproductive growth after heading. In this respect it was believed to be important to prevent the nutrient shortages at the reproductive stages, especially after the heading. 10. The area of unsatisfactory irrigation paddy fields and natural rain-fed paddy fields are getting reduced in Korea. The correlation between the rate of reducing unsatisfactory irrigation and natural rain-fed paddy fields and the rate of yield increase were computed. The correlation coefficients(r) between the area of unsatisfactory irrigation paddy fields and yield increase were +0.525, and between the natural rain-fed paddy fields and yield increase, +0.832 and between the unsatisfactory irrigation plus natural rain-fed paddy fields and yield increase, +0.84. And there were. highly significant positive correlations between natural rain-fed paddy fields and yield increases indicating that the less the area of natural rain-fed paddy fields, the greater the yields per unit area. 11. The results obtained from the fertilizer experiments (yield performance trials) conducted in both Korea and Japan showed that the yield of non-fertilized plots per 10 are was 231 kg in Korea and 360 kg in Japan. On the basis of this it might be concluded that the fertility of soil in Korea is lower than that in Japan. Furthermore it was. also found that the yields of non-nitrogen applied plots per 10 are were 236 kg in Korea and 383 kg in Japan. This also indicates that the yields of rice in Korea are largely depending on the nitrogen content in the soil. 12. The followings were obtained when the chemical natures of soils in both Korea and Japan were compared. (1) The content of organic matter, total nitrogen, exchangeable calcium, and magnesium in Korea were no more than the half those in Japan. (2) The content of N/2 chloride and soluble silicate in low-land soil were on the average lower in Korea. (3) The exchange capacity of bases in Korea was no more than half that in Japan. 13. It was also observed by comparing the soil nature of the soil with high yielding capacity with the soil with low yielding capacity that the exchange capacity of bases, exchangeable calcium and magnesium, potassium, phosphorus, manganese, silicate and iron were low in the soil with low yielding capacity. 14. The depth of furrow slice was always deeper in the soil with high yielding capacity, and the depth of furrow slice in Korea was also shallower than that in Japan. 15. Summarizing the various conditions mentioned previously and considering the effects of silicate and trace elements such as manganese and iron besides three elements on the physiological and plant type formation of rice crops, more realistic and more ideal fertilizing practices were proposed. proposed.

  • PDF