• Title/Summary/Keyword: Nutrient Deposition

Search Result 56, Processing Time 0.028 seconds

Changes in Nutrient Distribution, Cycling, and Availability in Aspen Stands after an Intensive Harvesting (집약적(集約的)인 벌채(伐採)로 인한 미국(美國)사시나무림내 양분(養分)의 분포(分布), 순환 (循環) 및 가용성(可溶性)의 변화(變化))

  • Kim, Dong Yeob
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.4
    • /
    • pp.656-666
    • /
    • 1996
  • Aspen demand has increased recently in the Great Lakes region in the United States. Since aspen has moved into the region in late 1800's, its growing stock has increased so as to change forestry industry of the Lake States. Intensive timber harvesting and biomass removal may cause nutrient depletion, especially on nutrient-poor sites. Forest nutrients and nutrient cycling were investigated in aspen stands of 7-10, 27-33, and 41-42 year-old growing on sandy soils in Minnesota. Nutrients added to the aspen stands by atmospheric deposition and soil weathering were efficiently absorbed and stored in the tree biomass. Aboveground biomass increased from $24.4t{\cdot}ha^{-1}$ at young stands to $139.2t{\cdot}ha^{-1}$ at mature stands. Nutrients accumulated in the tree biomass showed same magnitude of difference. Nutrients added to the site through atmospheric deposition were in the order of Ca, N, K, Mg, and P. Annual litterfall was greater in older stands. However, the amount of nutrients returned by litterfall was not significantly different among stand ages due to the greater nutrient contents in the litterfall of young stands. Litter decomposition and nutrient release rates were greater at young stands than at older stands. Likewise, nutrient availability was higher in young aspen stands and became lower as the stands grew older. Nutrient leaching loss was minimal at all stand ages. Soil N mineralization was greater at young stands than at older stands. Nutrient cycling process was facilitated in young aspen stands with an increased level of available nutrients, Based on the estimations of nutrient balance and nutrient removal by harvesting, Ca was the most critical element which was likely to be depleted if aspen stands are intensively harvested with short rotations.

  • PDF

Temporal Distribution of Ectomycorrhizal Fungi and Pollen as a Seasonal Nutrient Source in a Boreal Forest, Canada

  • Lee, Eun-Ju
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.169-173
    • /
    • 2000
  • Seasonal distribution of ectomycorrhizal associations in various types of forest in a boreal forest in Manitoba. Canada was investigated. Alsohe relationship between ectomycorrhizal growth and pine pollen nutrients was examined. In four different forest stands, ectomycorrhizas tended to be lower in the spring than in the summer and fall samples. In addition. a mature jack pine (Pinus banksiana) stand showed higher mycorrhizal activities than a young jack pine stand. Growth of Suillus brevipes hyphae wa ts stimulated by additions of pollen representing mean pollen deposition in Mistik Creek study area after 30 and 70 days of growth with dextrose availability. This result suggests that the peak ectomycorrhizal activity is followed by pollen deposition in the study region and therefore, addition of pine and spruce pollen in early or middle of June in the boreal forest can be an important seasonal nutrient source for ectomycorrhizal growth.

  • PDF

Lysosome Inhibition Reduces Basal and Nutrient-Induced Fat Accumulation in Caenorhabditis elegans

  • Lu, Rui;Chen, Juan;Wang, Fangbin;Wang, Lu;Liu, Jian;Lin, Yan
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.649-659
    • /
    • 2022
  • A long-term energy nutritional imbalance fundamentally causes the development of obesity and associated fat accumulation. Lysosomes, as nutrient-sensing and lipophagy centers, critically control cellular lipid catabolism in response to nutrient deprivation. However, whether lysosome activity is directly involved in nutrient-induced fat accumulation remains unclear. In this study, worm fat accumulation was induced by 1 mM glucose or 0.02 mM palmitic acid supplementation. Along with the elevation of fat accumulation, lysosomal number and acidification were also increased, suggesting that lysosome activity might be correlated with nutrient-induced fat deposition in Caenorhabditis elegans. Furthermore, treatments with the lysosomal inhibitors chloroquine and leupeptin significantly reduced basal and nutrient-induced fat accumulation in C. elegans. The knockdown of hlh-30, which is a critical gene in lysosomal biogenesis, also resulted in worm fat loss. Finally, the mutation of aak-2, daf-15, and rsks-1 showed that mTORC1 (mechanistic target of rapamycin complex-1) signaling mediated the effects of lysosomes on basal and nutrient-induced fat accumulation in C. elegans. Overall, this study reveals the previously undescribed role of lysosomes in overnutrition sensing, suggesting a new strategy for controlling body fat accumulation.

Critical Ratios of Ca/Al and Mg/Al in Nutrent Solution Limiting Growth of Pinus thunbergii (해송의 생육을 저해하는 Ca/Al 및 Mg/Al의 한계 비율)

  • Lee, Wi-Young;Yang, Jae E.;Park, Chang-Jin;Zhang, Yong-Seon;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.329-335
    • /
    • 2004
  • Acid deposition in forest adjacent to the industrial complexes causes soil acidification resulting in the leaching of cations, decreases of buffering capacity and increases of toxic metal concentrations such as Al, Fe, Mn and Cu in soil solution. Changes of nutrient availability equilibria by acid deposition have been known to retard the growth of pine trees. Objective of this research was to assess the critical ratios of Ca/Al and Mg/Al limiting the growth of Pinus thunbergii in the hydroponic culture. The Ca concentration and Ca/Al ratio in stalks of pine tree were increased as increasing Ca/Al molar ratio in the nutrient solution, but were not changed when the Ca/Al molar ratio was adjusted to greater than 1. Growth of Pinus thunbergii was inhibited at the Ca/Al molar ratio lower than l due to the Ca deficiency. The molar ratios of Ca/Al in the needles of Pinus thunbergii showed the similar tendency with the stalks. This indicated that Ca/Al molar ratio of 1 in the growth media was the critical level limiting the growth of Pinus thunbergii. Concentration of Mg and Mg/Al molar ratios in the stalks of pine tree were increased as increasing Mg/Al molar ratio in nutrient solution. Molar ratios of Mg/Al in the needles were increased as increasing Mg/Al ratios in nutrient solution up to 0.83, which was the critical level limiting the growth of Pinus thunbergii.

Effects of atmospheric environmental changes on annual ring growth of Cryptomeria japonica in Southern Korea

  • Luong, Thi-Hoan;Jang, Kyoung-Soo;Choi, Woo-Jung;Lee, Kye-Han
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • Annual ring formation is considered a source of information to investigate the effects of environmental changes caused by temperature, air pollution, and acid rain on tree growth. A comparative investigation of annual ring growth of Cryptomeria japonica in relation to environmental changes was conducted at two sites in southern Korea (Haenam and Jangseong). Three wood disks from each site were collected from stems at breast height and annual ring growth was analyzed. Annual ring area at two sites increased over time (p > 0.05). Tree ring growth rate in Jangseong was higher than that in Haenam. Annual ring area increment in Jangseong was more strongly correlated with environmental variables than that in Haenam; annual ring growth increased with increasing temperature (p < 0.01) and a positive effect of $NO_2$ concentration on annual ring area (p < 0.05) could be attributed to nitrogen deposition in Jangseong. The correlation of annual ring growth increased with decreasing $SO_2$ and $CO_2$ concentrations (p < 0.01) in Jangseong. Variation in annual growth rings in Jangseong could be associated with temperature changes and N deposition. In Haenam, annual ring growth was correlated with $SO_2$ concentration (p < 0.01), and there was a negative relationship between precipitation pH and annual ring area (p < 0.01) which may reflect changes in nutrient cycles due to the acid rain. Therefore, the combined effects of increased $CO_2$, N deposition, and temperature on tree ring growth in Jangseong may be linked to soil acidification in this forest ecosystem. The interactions between air pollution ($SO_2$) and precipitation pH in Haenam may affect tree growth and may change nutrient cycles in this site. These results suggested that annual tree ring growth in Jangseong was more correlated with environmental variables than that in Haenam. However, the further growth of C. japonica forest at two sites is at risk from the long-term effects of acid deposition from fossil fuel combustion.

Wood and Leaf Litter Decomposition and Nutrient Release from Tectona grandis Linn. f. in a Tropical Dry Deciduous Forest of Rajasthan, Western India

  • Kumar, J.I. Nirmal;Sajish, P.R.;Kumar, Rita.N.;Bhoi, Rohit Kumar
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.1
    • /
    • pp.17-23
    • /
    • 2010
  • The present study was conducted to quantify wood and leaf litter decomposition and nutrient release of a dominant tree species, Tectona grandis Linn. F. in a tropical dry deciduous forest of Rajasthan, Western India. The mean relative decomposition rate was maximum in the wet summer and minimum during dry summer. Rainfall and its associated variables exhibited greater control over litter decomposition than temperature. The concentrations of N and P increased in decomposing litter with increasing retrieval days. Mass loss was negatively correlated with N and P concentrations. The monthly weight loss was significantly correlated (P < 0.05) with soil moisture and rainfall in both wood and leaf litter. Tectona grandis was found to be most suitable tree species for plantation programmes in dry tropical regions as it has high litter deposition and decomposition rates and thus it has advantages in degraded soil restoration and sustainable land management.

Effect of Different Spray Dried Plasmas on Growth, Ileal Digestibility, Nutrient Deposition, Immunity and Health of Early-Weaned Pigs Challenged with E. coli K88

  • Bosi, P.;Han, In K.;Jung, H.J.;Heo, K.N.;Perini, S.;Castellazzi, A.M.;Casini, L.;Creston, D.;Gremokolini, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.8
    • /
    • pp.1138-1143
    • /
    • 2001
  • A total of 96 piglets were weaned at 19 and 13 days in Exp. 1 and 2, respectively, and allotted to one of four diets: three with different spray dried plasmas (SPs) and one with hydrolysed casein (HC). SPs were from pigs (SPP), mixed origin (SMP), and mixed origin with standardized level of immunoglobulins (SMPIG). All the diets contained 1.7% total lysine, 25% of the test protein source, 45% corn starch, 15% lactose, 2% sucrose, 7% soybean oil. At d 4 and d 2 in Exp. 1 and 2, respectively, piglets were perorally challenged with $10^{10}$ CFU E. coli K88. Growth performance, immunity, and health condition were measured for 15 days and 14 days in Exp. 1 and 2, respectively. To investigate apparent ileal digestibility and nutrient deposition, all piglets were sacrificed at d 14 in Exp. 2. In 1. 3 piglets died in HC diet and 1 in SPP diet. HC diet showed higher mortality (p<0.01) than other diets. In Exp. 2, no clinical sign of infection was detected, no difference for the content of E. coli K88 was found in feces at 4 and 6 days after the infection, and no E. coli K88 was found in the jejunum at the end of experiment. In both experiments, feed intake was lower for HC diet and ADG was 96, 106, 122 and 155 for HC, SPP, SMP and SMPIG diet, respectively (HC vs others, p<0.05; SMPIG vs other SP, p<0.01). Heal apparent digestibility of nitrogen in sacrificed piglets was higher for HC diet (p<0.05). After the challenge, K88-specific titers in saliva (Exp. 1) and in plasma (Exp. 2) were reduced in SMP and SMPIG. The piglets positive to the adhesion of the used E. coli strain to the intestinal brush borders had a significantly reduced growth (p<0.01) and a higher K88-specific IgA titer in plasma, in comparison with negative ones. This effect was independent of the diet. The data show the relevance of spray dried plasma sources and particularly of SP with standardized level of immunoglobulins for the feeding of early-weaned at the risk of infection by enterotoxigenic bacteria.

Atmospheric Deposition of Pine Pollen in Canada and Korea

  • Lee, Eun-Ju;Cho, Yong-Joo;Thomas Booth
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2001.06a
    • /
    • pp.77-80
    • /
    • 2001
  • In many temperate forest ecosystems, large quantities of pine pollen are deposited over a short period in early summer (Doskey and Ugoagwu 1989). Because pollen grains decompose rapidly and have macronutrient concentrations, the pollen rain may be an important component of nutrient dynamics in natural terrestrial and aquatic ecosystems (Stark 1972).(omitted)

  • PDF

Changing C-N Interactions in the Forest Floor under Chronic N Deposition: Implications for Forest C Sequestration

  • Park, Ji-Hyung
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.167-176
    • /
    • 2008
  • Atmospheric N deposition has far-reaching impacts on forest ecosystems, including on-site impacts such as soil acidification, fertilization, and nutrient imbalances, and off-site environmental impacts such as nitrate leaching and nitrous oxide emission. Although chronic N deposition has been believed to lead to forest N saturation, recent evidence suggests that N retention capacity, particularly in the forest floor, can be surprisingly high even under high N deposition. This review aims to provide an overview of N retention processes in the forest floor and the implications of changing C-N interactions for C sequestration. The fate of available N in forest soils has been explained by the competitive balance between tree roots, soil heterotrophs, and nitrifiers. However, high rates of N retention have been observed in numerous N addition experiments without noticeable increases in tree growth and soil respiration. Alternative hypotheses have been proposed to explain the gap between the input and loss of N in N-enriched, C-limited systems, including abiotic immobilization and mycorrhizal assimilation, both of which do not require additional C sources to incorporate N in soil N pools. Different fates of N in the forest floor have different implications for C sequestration. N-induced tree growth can enhance C accumulation in tree biomass as observed across temperate regions. C loss from forests can amount to or outweigh C gain in N-saturated, declining forests, while another type of 'C-N decoupling' can have positive or neutral effects on soil C sequestration through hampered organic matter decomposition or abiotic N immobilization, respectively.

Atmospheric Acidic Deposition: Response to Soils and Forest Ecosystems (대기 산성 강하물: 토양과 삼림 생태계의 반응)

  • Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.28 no.6
    • /
    • pp.417-431
    • /
    • 2005
  • Soils of Korea experienced with long-term acidic deposition have been exhaustively leached exchangeable base cation (BC) for plant nutrient comparable with soils of forest decline areas in Europe and N. America. Ratios of $BC/Al^{3+}$ of most soils are below than 1, which value is critical load for plant growth. Acid soil applied with dolomitic liming is increased as much as 20% and 244% in concentrations of $Ca^{2+}$ and $Mg^{2+}$, respectively, as well as shrub leaves increase much cation uptake by 1 year later. Ions of $NO_3^-$ and $NH_4^+$ in acid rain are absorbed by the canopy acted as the sink but f is leached out from the canopy to throughfall as the source at Gwangneung forest with a little of acidic deposition, however, such sink and source functions are not found at Kwanaksan forest because of so much deposition. In coniferous and deciduous forested watershed ecosystems ions of $K^+$, $Cl^-$, $NO_3^-$ and $SO_4^{2-}$ from throughfall are retained in forest floor but ions of $Na^+, $Mg^{2+}$ and $Ca^{2+}$ are leached from the floor to streamwater.