• 제목/요약/키워드: Nutrient Degradation

검색결과 153건 처리시간 0.026초

The Effect of Yerba Mate (Ilex Paraguariensis) Supplementation on Nutrient Degradability in Dairy Cows: An In sacco and In vitro Study

  • Hartemink, Ellen;Giorgio, Daniela;Kaur, Ravneet;Di Trana, Adriana;Celi, Pietro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권11호
    • /
    • pp.1606-1613
    • /
    • 2015
  • This study was carried out to investigate the effects of Yerba Mate (YM) supplementation on nutrients' degradation, in vitro dry matter disappearance, gas production and rumen ammonia concentration. Three rumen-fistulated Holstein Friesian cows were used for the in situ incubations and provided rumen liquor for in vitro incubations. The inclusion of YM in a control diet (pasture+pellets) affected some in sacco degradation parameters. YM supplementation decreased the effective degradability and degradation rate of pasture crude protein (CP), and it seems to slow down the degradation of pasture neutral detergent fiber. A significant increase of degradation of pasture acid detergent fiber (ADF) was detected after YM inclusion in the control diet. YM supplementation reduced in vitro gas production of pasture and ammonia concentration of pellets. The addition of YM in ruminant diet could decrease ammonia production and increase protein availability for productive purposes. The moderate presence of tannins in YM could have affected the degradation kinetics of pasture CP and ADF and the ammonia production of pellets.

Quantitative Study of the Reformation of Excess Sludge by Intense Aeration Under Nutrient-poor Conditions

  • L Guang Wei;Chen Liming;Toda Kiyoshi;Zhang Shuting
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권6호
    • /
    • pp.519-522
    • /
    • 2004
  • In the course of anaerobic storage of excess sludge, odors due to chemicals such as hydrogen sulfide are produced. These odors cause many problems. Many methods have been developed to eliminate odors, but all current methods are not only costly, but also largely inef­fective. In this paper, we investigate the process of transformation of sludge microorganism cul­tures through intense aeration under nutrient-poor conditions, in terms of the selective adjust­ment and control of microorganism culture. The aerated sludge is subsequently returned to the adjusting pool, where the microorganisms inhibit odors, thus the excess sludge itself will act as an odor inhibitor. The process can be verified in terms of viability, in that the degradation capac­ity of the sludge was maintained after the intensely-aerated sludge was returned to the treat­ment system.

저강우연도 지하수 관개 필지논에서 수도재배기간 동안의 물질수지 (Water and Nutrient Mass Balances in Paddy Field with Groundwater Irrigation in Low-Rainfall Year)

  • 황하선;전지홍;김병희;윤춘경
    • 한국농공학회지
    • /
    • 제44권4호
    • /
    • pp.39-50
    • /
    • 2002
  • Field experiment was performed to investigate water and nutrient mass balances in paddy field with groundwater irrigation from May to October, 2001. The total water inflow was about 1,183mm in which rainfall, overflow from upstream paddy, and groundwater irrigation accounted for 43, 30, and 27%, respectively. Notice that the precipitation of the study period was less than the average annual precipitation. The total drainage was almost balanced with the inflow and more than half of it was occurred by surface drainage. From the nutrient mass balance analysis, the T-P output (17.56kg/ha) was estimated slightly lower than the input (20.90kg/ha) and the T-N output (130.41kg/ha) was slightly greater than the input(129.24kg/ha). However, the difference was within the expectation and the nutrient mass was thought to be balanced considering uncertainties in field experiment and other activities not included in the study such as algae and soil microorganisms. The surface discharge of nutrient, which was about 10% of total nutrient output, was mainly affected by fertilization and rainfall runoff. Therefore, prudent surface drainage plan might be necessary particularly for the fertilization period to prevent degradation of receiving water quality. The study was performed under abnormally low rainfall compared to the average annual rainfall record, and further monitoring in diverse rainfalls and irrigation methods is recommended to estimate nutrient behavior in the paddy field more reasonably.

Evaluation of Mulberry (Morus alba) as Potential Feed Supplement for Ruminants: The Effect of Plant Maturity on In situ Disappearance and In vitro Intestinal Digestibility of Plant Fractions

  • Saddul, D.;Jelan, Z.A.;Liang, J.B.;Halim, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권11호
    • /
    • pp.1569-1574
    • /
    • 2005
  • The in situ nylon bag degradation and in vitro intestinal digestibility of dry matter (DM), and crude protein (CP) of mulberry (Morus alba) plant fractions was studied at four harvest stages, 3 (W3), 5 (W5), 7 (W7) and 9 (W9) weeks. Degradability of DM and CP of the whole plant and stem fractions declined significantly (p<0.01) with advancing plant maturity in the order W3>W5 and W7>W9 and W3>W5>W7>W9, respectively. The degradation of DM and CP of the leaf fraction was also influenced by plant maturity but no trend was observed. The degradation of DM and CP of the whole plant and leaves increased rapidly during the first 48 and 24 h of incubation, respectively, when maximum degradation was reached. In vitro intestinal digestibility of CP was more influenced by the residence time in the rumen than by plant maturity. This study showed that mulberry is suitable as a supplement, particularly to low-quality roughages, in providing a source of rapidly available nitrogen to the rumen microbes, hence improving the roughage degradability and intake.

토양 분리 박테리아에 의한 2,4-Dichlorophenoxyacetic산의 분해 최적화 (Statistical Optimization for Biodegradation of 2,4-Dichlorophenoxyacetic Acid by Soil Isolated Bacterium)

  • Kim, Byunghoon;Myunghee Han;Sungyong Cho;Sungjin Ahn;Lim, Sung-Paal;Sunkyun Yoo
    • 한국미생물·생명공학회지
    • /
    • 제31권1호
    • /
    • pp.83-89
    • /
    • 2003
  • 2,4-D는 자연에서 잘 분해되지 않아 환경에 대하여 심각하게 문제를 일으키지만 널리 사용되고 있는 제초제이다. 이 연구는 광주광역시 인근 지역 과수원에서 분리한 균주 중 가장 높은 2.4-D분해 활성을 보이는 균주를 선정하여, 동정한 결과 Aeromonas sp.로 판명된 균주를 가지고 표면 반응법(Response Surface Methodology)을 이용하여 2,4-D 분해를 최대화하기 위한 중요한 변수들인, pH,온도, 영양분의 농도들의 최적조건을 고찰하였다. 2,4-D분해에 많은 영향을 미치는 변수는 영양분의 농도로 밝혀졌으며, 통계 분석결과 2,4-D분해 최적 조건은 pH 6.5, 온도 $31.8-32.1^{\circ}C$, 영양분 29.6-30.1 g/1로 밝혀졌다.

사료에 대한 활성탄의 첨가가 in vitro 시험시의 발효성상 및 영양소 소실율에 미치는 영향 (Effects of Activated Charcoal on in vitro Ruminal Fermentation Characteristics and Nutrient Disappearances)

  • 이봉덕;이수기;이기동
    • 농업과학연구
    • /
    • 제26권2호
    • /
    • pp.25-32
    • /
    • 1999
  • 본 시험음 활성탄의 첨가가 사료의 반추위내 발효성상 건물 및 영양소 소실율 반추위내 가스 생산량에 미치는 영향을 조사하기 위하여 in vitro 조건에서 실시되었다. 활성탄의 첨가수준은 0.00 0.25 0.50 %의 3수준이었으며, 사료의 조농비율은 볏짚과 농후사료 비율을 8:2 6:4 4:6 및 2:8로 하였다. 그리고 처리간 유의성은 5% 수준에서 검정하였다. 시험 결과를 요약하면, 위액의 pH는 활성탄의 첨가 비율이 높아질수록 높아지는 경향을 나타냈으나 유의성은 인정되지 않았으며, 사료의 조농비율에 따른 영향은 8:2구가 다른 처리구보다 유의하게 높았다. 그리고 VFA molar %는 활성탄 첨가에 의하여 유의한 결과는 아니지만 $C_2$는 감소되고 $C_3$는 증가되는 경향을 나타냈다. 또한 조사료비율이 증가될 수록 전술의 결과와는 상반된 현상을 보였다. $C_2/C_3$ 비율도 활성탄의 첨가와 농후사료 비율의 증가에 의하여 감소되는 경향을 나타냈다. 건물 및 영양소 소실율에 있어서는 활성탄 첨가에 의하여 건물 조단백질 NDF ADF hemicellulose의 소실율이 증가하는 경향을 보였다. 그러나 조지방의 소실율은 일정한 경향을 나타내지 않았다. 조농비율에 의한 영향에 있어서는 농후사료의 비율이 증가할 수록 건물 및 영양소의 소실율이 유의하게 증가하였다. 그리고 반추위내 가스 생산량에 있어서는 활성탄 0.5% 첨가구가 0.25% 및 0.00%구에 비하여 감소하는 경향이었고, 조사료의 비율이 높을수록 많아지는 경향이었다. 위 결과에서 보듯이 활성탄은 가축의 생산성 향상에 유리한 조건을 제공하는 경향이 있지만, 이것을 좀 더 명확히 밝히기 위해서는 활성탄의 흡착능력 위내의 세균총에 대한 연구 및 많은 생체실험도 병행되어야 할 것으로 생각된다.

  • PDF

Effects of Mixtures of Tween80 and Cellulolytic Enzymes on Nutrient Digestion and Cellulolytic Bacterial Adhesion

  • Hwang, Il Hwan;Lee, Chan Hee;Kim, Seon Woo;Sung, Ha Guyn;Lee, Se Young;Lee, Sung Sill;Hong, Hee Ok;Kwak, Yong-Chul;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권11호
    • /
    • pp.1604-1609
    • /
    • 2008
  • A series of in vitro and in vivo experiments were conducted to investigate the effects of the mixture of Tween 80 and cellulolytic enzymes (xylanase and cellulase) on total tract nutrient digestibility and rumen cellulolytic bacterial adhesion rates in Holstein steers. Ground timothy hay sprayed with various levels of Tween 80 and cellulolytic enzymes was used as substrates in an in vitro experiment to find out the best combinations for DM degradation. The application level of 2.5% (v/w) Tween 80 and the combination of 5 U xylanase and 2.5 U cellulase per gram of ground timothy hay (DM basis) resulted in the highest in vitro dry matter degradation rate (p<0.05). Feeding the same timothy hay to Holstein steers also improved in vivo nutrient (DM, CP, CF, NDF and ADF) digesibilities compared to non-treated hay (p<0.05). Moreover, Tween 80 and enzyme combination treatment increased total ruminal VFA and concentrations of propionic acid and isovaleric acid with decreased acetate to propionate ratio (p<0.001). However, adhesion rates of Fibrobacter succinogenes and Ruminococcus flavefaciens determined by Real Time PCR were not influenced by the treatment while that of Ruminococcus albus was decreased (p<0.05). The present results indicate that a mixture of Tween 80 and cellulolytic enzymes can improve rumen environment and feed digestibility with variable influence on cellulolytic bacterial adhesion on feed.

Effects of Aspergillus oryzae Fermentation Extract on In Situ Degradation of Feedstuffs

  • Chiou, P.W.S.;Chen, C.;Yu, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권8호
    • /
    • pp.1076-1083
    • /
    • 2000
  • The aim of this study was to evaluate the effect of Aspergillus oryzae fermentation extract (AFE) on in situ degradation of the various concentrates, forages and by-products in Taiwan. The in situ trial was conducted to determine the effect of AFE on the rate of ruminal degradation of dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) of the various local available feedstuff commonly used for dairy cattle. Two ruminal fistulated cows were arranged into a two by two switchback trial. Two dietary treatments were control without AFE inclusion diet and diet with 3 g of AFE (Amaferm) added daily into the total mixed ration (TMR). Results showed that effect of AFE inclusion on the ruminal degradability of concentrates vary; soybean meal is the most responsive feedstuff, corn is the next, whereas full-fat soybean did not response the AFE inclusion at all. The inclusion of AFE significantly depressed most of the nutrient degradation of the concentrates of soybean meal in the first 12-hour in situ incubation. The effect declined in the next 12 hours. Rapeseed meal showed a different trend of response: addition of AFE improved its NDF degradation. The inclusions of AFE significantly improved ADF degradation of roughage after 24 or 48 hours of incubation. However, corn silage and peanut-vines showed a different trend. Effects of AFE inclusion on the by-products degradability were inconsistent. Most of nutrients in rice distillers grain and some in beancurd pomace did show increased degradation by the AFE inclusion.

Review of advanced oxidation processes (AOPs) for treatment of pharmaceutical wastewater

  • Verma, Manisha;Haritash, A.K.
    • Advances in environmental research
    • /
    • 제9권1호
    • /
    • pp.1-17
    • /
    • 2020
  • Pharmaceutically active compounds (PhACs) have become an environmental havoc in last few decades with reported cases of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs), lethal effects over aquatic organisms, interference in natural decomposition of organic matter, reduced diversity of microbial communities in different environmental compartments, inhibition of growth of microbes resulting in reduced rate of nutrient cycling, hormonal imbalance in exposed organisms etc. Owing to their potential towards bioaccumulation and persistent nature, these compounds have longer residence time and activity in environment. The conventional technologies of wastewater treatment have got poor efficiency towards removal/degradation of PhACs and therefore, modern techniques with efficient, cost-effective and environment-friendly operation need to be explored. Advanced oxidation processes (AOPs) like Photocatalysis, Fenton oxidation, Ozonation etc. are some of the promising, viable and sustainable options for degradation of PhACs. Although energy/chemical or both are essentially required for AOPs, these methods target complete degradation/mineralization of persistent pollutants resulting in no residual toxicity. Considering the high efficiency towards degradation, non-toxic nature, universal viability and acceptability, AOPs have become a promising option for effective treatment of chemicals with persistent nature.