• 제목/요약/키워드: Nutmeg and mace

검색결과 3건 처리시간 0.017초

Traditional Unani uses with multiple pharmacological activities of aril of Myristica fragrans (Mace)

  • Sultana, Arshiya;Najeeya, Abdul G.F.;Anjum, Amera
    • 셀메드
    • /
    • 제8권2호
    • /
    • pp.6.1-6.7
    • /
    • 2018
  • Myristica fragrans Houtt is commonly known as "nutmeg", it produces two spices: mace and nutmeg. Mace and nutmeg are strongly aromatic in nature and known as jowzabuwa and javetri/bisbasah respectively in the Unani system of medicine. M. fragrans was used as early as 700 BCE by Indian, however, ancient Greeks and Romans were not aware of it. Later Arab traders introduce M. fragrans into Europe followed by Portuguese and Dutch merchants. Mace is very useful medicine in the Unani system of medicine because of its therapeutic uses in salasal al-bawl (urinary incontinence), amrad-i-qalb (cardiac diseases), amrad-i-dimagh (central nervous system), zo'fe bah (sexual debility), amrad al-rahim (uterine diseases), and su-i-hazim (indigestion). The most important constituents of mace essential oil are ${\alpha}-pinene$, sabinene, myrcene, limonene, 1,8-cineole, terpinen-4-ol, myristicin, ${\gamma}-terpinene$, and safrole. The seed and mace extract of nutmeg contain quite high tannins, flavonoids, and terpenoids. Mace has pharmacological functions such as antibacterial and antifungal, anti-inflammatory, analgesic, antidiarrhea, antioxidant, chemoprotective, neuropharmacologic, and antidiabetic properties. To explore the correlation between the traditional uses and the same proven by recent researches, a comprehensive review is highlighted in this paper. Further, pharmacological activities which are not reported in classical texts are also discussed.

Poly(dimethylsiloxane) Mini-disk Extraction

  • Cha, Eun-Ju;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3603-3609
    • /
    • 2011
  • A novel sampling method of the headspace poly(dimethylsiloxane) (PDMS) mini-disk extraction (HS-PDE) was developed, optimized, validated and applied for the GC/MS analysis of spices flavors. A prototype PDMS mini-disk (8 mm outer diameter, 0.157 mm thickness, 9.4 mg weight) has been designed and fabricated as a sorption device. The technique uses a small PDMS mini-disk and very small volume of organic solvent and less sample size than the solvent extraction. This new HS-PDE method is very simple to use, inexpensive, rapid, requires less labor. Linearities of calibration curves for ${\alpha}$-pinene, ${\beta}$-pinene, limonene and ${\gamma}$-terpinene by HS-PDE combined with GC/MS were excellent having $r^2$ values greater than 0.99 at the dynamic range of 6.06~3500 ng/mL. The limit of detection (LOD) and the limit of quantitation (LOQ) showed very low values. This method exhibited good precision and accuracy. The overall extraction efficiency of this method was evaluated by using partition coefficients ($K_p$) and concentration factors (CF) for several characteristic components from nutmeg and mace. Partition coefficients were in the range from $2.04{\times}10^4$ to $4.42{\times}10^5$, while CF values were 0.88-15.03. HS-PDE was applied successfully for the analysis of flavors compositions from nutmeg, mace and cumin. The HS-PDE method is a very promising sampling technique for the characterization of volatile flavors.

$PPAR_{\gamma}$ Ligand-binding Activity of Fragrin A Isolated from Mace (the Aril of Myristica fragrans Houtt.)

  • Lee, Jae-Young;Kim, Ba-Reum;Oh, Hyun-In;Shen, Lingai;Kim, Naeung-Bae;Hwang, Jae-Kwan
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1146-1150
    • /
    • 2008
  • Peroxisome proliferator-activated receptor-gamma ($PPAR_{\gamma}$), a member of the nuclear receptor of ligand-activated transcription factors, plays a key role in lipid and glucose metabolism or adipocytes differentiation. A lignan compound was isolated from mace (the aril of Myristica fragrans Houtt.) as a $PPAR_{\gamma}$ ligand, which was identified as fragrin A or 2-(4-allyl-2,6-dimethoxyphenoxy)-1-(4-hydroxy-3-methoxyphenyl)-propane. To ascertain whether fragrin A has $PPAR_{\gamma}$ ligand-binding activity, it was performed that GAL-4/$PPAR_{\gamma}$ transactivation assay. $PPAR_{\gamma}$ ligand-binding activity of fragrin A increased 4.7, 6.6, and 7.3-fold at 3, 5, and $10{\mu}M$, respectively, when compared with a vehicle control. Fragrin A also enhanced adipocytes differentiation and increased the expression of $PPAR_{\gamma}$ target genes such as adipocytes fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and phosphoenol pyruvate carboxykinase (PEPCK). Furthermore, it significantly increased the expression level of glucose transporter 4 (GLUT4). These results indicate that fragrin A can be developed as a $PPAR_{\gamma}$ agonist for the improvement of insulin resistance associated with type 2 diabetes.