• Title/Summary/Keyword: Nusselt number

Search Result 583, Processing Time 0.023 seconds

Experimental Study on the Heat Transfer and Turbulent Flow Characteristics of Jet Impinging the Non-isothermal Heating Plate (비균일 온도분포를 갖는 평판에 대한 충돌제트의 열전달 및 난류유동특성에 관한 연구)

  • 한충호;이계복;이충구;이창우
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.272-277
    • /
    • 2001
  • An experimental study of jet impinging the non-isothermal heating surface with linear temperature gradient is conducted with the presentation of the turbulent flow characteristics and the heat transfer rate, represented by the Nusselt number. The jet Reynolds number ranges from 15,000 to 30,000, the temperature gradient of the plate is 2~4.2$^{\circ}C$/cm and the dimensionless nozzle to plate distance (H/D) is from 2 to 10. The results show that the peak of heat transfer rate occurs at the stagnation point, and the heat transfer rate decreases as the radial distance from the stagnation point increases. A remarkable feature of the heat transfer rate is the existence of the second peak. This is due to the turbulent development of the wall jet. Maximum heat transfer rate occurs when the axial distance from the nozzle to nozzle diameter (H/D) is 6 or 8. The heat transfer rate can be correlated as a power function of Prandtl number, Reynolds number, the dimensionless nozzle to plate distance (H/D) and temperature gradient (dT/dr). It has been found that the heat transfer rate increases with increasing turbulent intensity. The wall jet is influenced by temperature gradient and the effect becomes more important at higher radii.

  • PDF

A Study on Combustion and Heat Transfer in Premixed Impinging Flames of Syngas(H2/CO)/Air Part II: Heat Transfer Characteristics (합성가스(H2/CO)/공기 예혼합 충돌화염의 연소 및 열전달 연구 Part II : 열전달 특성)

  • Sim, Keunseon;Jeong, Byeonggyu;Lee, Yongho;Lee, Keeman
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.59-71
    • /
    • 2014
  • An experimental study has been conducted to investigate the heat transfer characteristics of laminar syngas/air mixture with 10% hydrogen content impinging normally to a flat plate of cylinder. Effects of impinging distance, Reynolds number and equivalence ratio as major parameters on heat fluxes of stagnation point and radial direction were examined experimentally by the direct photos and data acquisitions from heat flux sensor. In this work, we could find the incurved flame behavior of line shaped inner top-flame in very closed distance between flat plate and burner exit, which has been not reported from general gas-fuels. There were 3 times of maximum and 2 times minimum heat flux of stagnation point with respect to the impinging distance for the investigation of Reynolds number and equivalence ratio effect. It was confirmed that the maximum heat flux of stagnation point in 1'st and 2'nd peaks increased with the increase of the Reynolds number due to the Nusselt number increment. There was a third maximum rise in the heat flux of stagnation point for larger separation distances and this phenomenon was different each for laminar and turbulent condition. The heat transfer characteristics between the stagnation and wall jet region in radial heat flux profiles was investigated by the averaged heat flux value. It has been observed that the values of averaged heat flux traced well with the characteristics of major parameters and the decreasing of averaged heat flux was coincided with the decreasing trend of adiabatic temperature in spite of the same flow condition, especially for impinging distance and equivalence ratio effects.

Research on Thermal Performance by Different Fins in a Solar Air Heater (태양열 공기난방기에서 핀의 형상에 따른 열전달 성능 평가)

  • Choi, Hwi-Ung;Hong, Boo-Pyo;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.85-91
    • /
    • 2013
  • It is essential to reduce the amount of fossil fuel because facing with the natural problem such as a global warming. To achieve this goal, many of interests in the use of renewable energy is growing. Especially, as one of these renewable energy systems, a solar air heater invention has been conducted for enhancing the efficiency of solar air heater. According to this trend, scale-down sized experiment apparatus was constructed and performed for searching a proper fin and confirming the heat transfer performance by fin shape on constant heat condition to enhance efficiency of solar air heater. In this experiment, heat gain, convection heat transfer coefficient, number of transfer units, Nusselt number, Reynold's number, friction factor, performance factor were investigated in order to evaluate the thermal characteristics based on the real data obtained. By comparison with the each fin performance, a zigzag shape keeping a right angle to the plate had the highest value among them.

The Pressure Drop and Heat Transfer Characteristics of a Direct Contact 4-Stage Fluidized Bed Heat Exchanger (직접 접촉식 4단 유동층 열교환기의 압력손실 및 열전달 특성)

  • 임동렬;박상일;전광민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.325-335
    • /
    • 1992
  • In this work, direct contact 4-stage fluidized bed heat exchanger is experimentally studied to develop a new type of heat exchanger which recovers the energy contained in the high temperature waste gas exhausted from the industrial furnaces. A sand is used as a heat transfer medium in this experiment. To determine the optimum operating condition, 11 different perforated plates which have a different free area ratio with different hole diameter are used in the experiment. From the room temperature experiment, the pressure drop which is caused by fluidized bed formation is observed. The high temperature experiment is carried out to seek the optimum operating condition of high heat efficiency at low heat exchanger operation cost. The results of experiment are as following. The pressure drop in the high temperature condition can be predicted from the results of the room temperature experiment. And Nusselt number becomes smaller due to the increased interference between sand particles as Reynolds number increases when the dilute phase fluidized beds are formed in nigh temperature condition. But heat transfer amount through the total sand surface area become larger due to the large resident amount of sand. Considering the heat transfer amount and the heat exchanger operation cost, perforated plates which have either a 30% or 35% of free area ratio with 15mm of hole diameter are best fitted for our goal of this work. The values of .phi. which is a dimensionless number representing the absorption heat amount per unit sand rate are in the range from 0.4 to 0.5, when Reynolds number of waste gas ranges from 25-30 with these perforated plates.

High prandtl number natural convection in a low-aspect ratio rectangular enclosure (종횡비 가 낮은 직각밀폐용기내 의 Prandtl 수 가 큰 유체 의 자연대류 에 관한 실험적 연구)

  • 이진호;황규석;현명택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.750-756
    • /
    • 1985
  • Experimental investigation was carried out to study the natural convection of water and silicon oil due to end temperature differences in a horizontally insulated rectangular enclosure of aspect ratio 0.1 with a special attention on the core configuration in the laminar boundary-layer flow regime. Rayleigh number ranges covered herein are Ra=4.40 * 10$^{6}$ -9.64 * 10$^{7}$ for water and Ra=1.69*10$^{5}$ -3.80*10$^{6}$ for silicon oil, respectively. In the case of water, for Ra.geq.2.21 * 10$^{7}$ there appeared distinct horizontal thermal layers adjacent to the horizontal boundaries in the core and the temperature distribution outside the horizontal thermal layers, i.e., in the mid-core region, is vertically stratified. The core flow pattern was shown to be nonparallel with a weak back flow in the mid-core for Ra.geq.3.63 *10$^{7}$ . In the case of silicon oil, distinct horizontal thermal layers appeared along the core horizontal boundaries for Ra.geq.1.27 * 10$^{6}$ with a stratified temperature distribution in the mid-core, but the core flow pattern in this case was shown to be parallel. In addition, secondary flow appeared near the hot wall for Ra.geq.3.80 * 10$^{6}$ . Nusselt number, Nu, was found to be proportional to R $a^{0.3}$ for water and R $a^{0.28}$ for silicon oil in the boundary-layer flow regime. There also in an indication from the comparison with other results that Nu is independent of aspect ratio for water in the boundary-layer flow regime in low aspect ratio enclosures.res.

Numerical Analysis of Natural Convection from an Inclined Ice Flat Plate Immersed in cold Water Near Its Density Maximum (최대밀도점 부근의 물속에 잠겨있는 경사진 얼음평판에 의한 자연대류의 수치해석)

  • 유갑종;추홍록
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2136-2149
    • /
    • 1992
  • The natural convection from an inclined ice flat plate immersed in cold water near its density maximum is studied numerically. Finite difference analysis has been performed for the heat and momentum transfer with respect to various inclined angles and ambient water temperatures. The results of the analysis are presented for ambient water temperatures, 1.0deg. C. leq. T/sub .inf./.leq. 15.0deg. C and the inclined anales from 0deg to 60deg. They include velocity profiles, temperature profiles, melting velocities, and mean Nusselt numbers for entire flow fields, Generally, in the range of 0deg. C .leq.theta. .leq. 60.deg. C, the results show three distinct flow regimes, In the range of 1.0 deg. C .leq. T/sub .inf./ .leq. 4.6 .deg. C, the greatest mean Nuselt number exists about 3.0deg. C. In the range of 5.7deg. C .leq. T/sub .inf./ .leq. 15.0deg. C, mean Nuselt number increases as ambient water temperature increases. Also, the mean Nuselt number decreases as the inclined angle increases. This theoretical results are compared with previous experimental ones and multiple steady state ones.

A Study on Finned Tube Used in Turbo Refrigerator(III) -for Pressure Drop- (터보 냉동기용 핀 튜브에 관한 연구 (III) -압력 손실에 관하여-)

  • Han, Kyu-Il;Kim, Si-Young;Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.6 no.1
    • /
    • pp.58-76
    • /
    • 1994
  • Heat transfer and pressure drop measurements are made on low integral-fin tubes in turbulent water flow condition. The integral-fin tubes investigated in this paper are nominally 19mm in diameter. Eight tubes have been used with trapezoidally shaped integral-fins having fin density from 748 to 1654 fpm and 10, 30 grooves. Plain tube having same diameter as finned tube is also tested for comparison. Experiments are carried out using R-11 as working fluid. The refrigerant condensates at a saturation state of $30^{\circ}C$ on the outside tube surface cooled by coolant. The amount of noncondensable gases present in the test loop is reduced to a negligible value by repeated purging. For a given heat input to the boiler and given cooling water flow rate, all test data are taken on steady state. The heat transfer loop is used for testing single long tubes and cooling water is pumped from a storage tank through filters and flowmeters to the horizontal test section where it is heated by steam condensing on the outside of the tube. The pressure drop across the test section is measured by means of pressure gauge and manometer. Each tube tested is cleaned with sodium dichromate pickling solution and well rinsed with water prior to installation in the test section. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, heat transfer of finned tube is enhanced up to 4 times as that of a plain tube at constant Reynolds number and up to 2 times at constant pumping power. 2. Friction factors are up to 1.6~2.1 times those of plain tube. 3. At a given Reynolds number, Nusselt number decrease with increasing pitch to diameter. 4. The constant pumping power ratio for low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio.

  • PDF

Study on Heat Transfer Characteristics for Single-phase Flow in Rectangular Microchannels (사각 마이크로 채널의 단상 유동 열전달 특성 연구)

  • Mun, Ji-Hyun;Kim, Seon-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.891-896
    • /
    • 2011
  • In this study, experiments were carried out to investigate the convective heat transfer characteristics of rectangular microchannels. The sample used in the experiments contained 20 rectangular microchannels in parallel. The channels had a hydraulic diameter of 700 ${\mu}m$. Distilled water was used as the working fluid. In the experiments, the Reynolds number ranged from 400 to 800, heat flux ranged from 35 to 85 kW/$m^2$, and the inlet fluid temperature was $20^{\circ}C$. As a result, the convective heat transfer coefficient increased upon increasing the Reynolds number and ranged from 4.6 to 6.4 kW/$m^2/^{\circ}C$ in the thermally fully developed region. Moreover, the higher the Reynolds number, the longer the thermal entry length in the rectangular microchannels. However, it was observed that a variable heat flux did not affect the thermal entry length. In conclusion, a correlation was proposed to indicate the heat transfer characteristics in a thermally fully developed region.

Runge-Kutta method for flow of dusty fluid along exponentially stretching cylinder

  • Iqbal, Waheed;Jalil, Mudassar;Khadimallah, Mohamed A.;Ayed, Hamdi;Naeem, Muhammad N.;Hussain, Muzamal;Bouzgarrou, Souhail Mohamed;Mahmoud, S.R.;Ghandourah, E.;Taj, Muhammad;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.603-615
    • /
    • 2020
  • The present manuscript focuses on the flow and heat transfer of the dusty fluid along exponentially stretching cylinder. Enormous attempts are made for fluid flow along cylinder but the study of fluid behavior along exponentially stretching cylinder is discussed lately. Using appropriate transformations, the governing partial differential equations are converted to non-dimensional ordinary differential equations. The transformed equations are solved numerically using Shooting technique with Runge-Kutta method. The influence of the physical parameters on the velocity and temperature profiles as well as the skin fraction coefficient and the local Nusselt number are examined in detail. The essential observations are as the fluid velocity decreases but temperature grows with rise in particle interaction parameter, and both the fluid velocity and temperature fall with increase in mass concentration parameter, Reynold number, Particle interaction parameter for temperature and the Prandtl number.

Experimental Study on Heat Transfer Characteristics of Swirling Impinging Jet (스월 충돌제트의 열전달 특성에 관한 실험적 연굴)

  • Jo, Jeong-Won;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1346-1354
    • /
    • 2001
  • The heat transfer characteristics off swirling air jet impinging on a heated flat plate have been investigated experimentally. The main object is to enhance the heat transfer rate by increasing turbulence intensity of impinging jet with a specially designed swirl generator. The mean velocity and turbulent intensity profiles of swirling jet were measured using a hot-wire anemomety. The temperature distribution on the heated flat surface was measured with thermocouples. As a result the swirl effect on the local heat transfer rate on the impinging plate is confined mainly in the small nozzle-to-plate spacings such as L/D<3 at the stagnation region. For small nozzle-to-plate spacings, the local heat transfer in the stagnation region is enhanced from the increased turbulence intensity due to swirl motion, compared with the conventional axisymmetric impinging jet without swirl. For example, the local Nusselt number of swirling jet with swirl number Sw=0.75 and Sw=1 is about 9.7-76% higher than that of conventional impinging jet at the radial location of R/D=0.5. With the increase of the nozzle-to-plate distance, the stagnation heat transfer rate is decreased due to the diminishing axial momentum of the swirling jet. However, the swirling impinging jet for all nozzle-to-plate spacings tested in this study does not enhance the average heat transfer rate.