• Title/Summary/Keyword: Nusselt수

Search Result 16, Processing Time 0.019 seconds

A Numerical Study of the Fluid Flow and Heat Transfer Characteristics of the Two-Dimensional Turbulent Impingement Jet with a Confinement Plate (제한면을 가지는 이차원 난류 충돌젯트의 유동 및 열전달 특성의 수치적 연구)

  • 강동진;오원태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1675-1683
    • /
    • 1995
  • A numerical study of the fluid flow and heat transfer characteristics of the two-dimensional impingement jet with a confinement plate has been carried out. The fluid flow was calculated by solving the full Navier-Stokes equation. In doing that, the well known SIMPLER algorithm was used and the trouble making convection term was discretized according to QUICKER scheme. The energy equation was simply solved by using the SOR method. For the Reynolds number of 10000, two channel heights, say 1.5 and 3.0 times the jet exit width, and two thermal boundary conditions constant wall temperature and constant wall heat flux were considered. Discrete heat sources were flush mounted along the impingement plate at a distance of 0, 2, 3, 4, 5, 6, 10, 12, times the jet exit width from the stagnation point. The length of each heat source is 4 times the jet exit width long. The Nusselt number averaged over each heat source was compared with experiment. Comparison shows that both calculations and experiment have the secondary peak of Nusselt number at downstream of stagnation point, even though there is a little quantitative difference in between. The difference is believed due to abscure thermal boundary condition in experiment and also accuracy of turbulence model used. The secondary peak is shown to be caused by rigorous turbulent flow motion generated as the wall jet flow is retarded and developes into the channel flow without flow reversal.

A Numerical Study on Flow and Heat Transfer Characteristics for an Oblique Impingement Jet Using $k-{\varepsilon}-\bar{\upsilon{'}^2}$ Model ($k-{\varepsilon}-\bar{\upsilon{'}^2}$모델을 이용한 경사진 충돌제트의 유동 및 열전달 특성에 대한 수치해석적 연구)

  • Choe, Yeong-Gi;Choe, Bong-Jun;Lee, Jeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1183-1192
    • /
    • 2001
  • The numerical simulation has been conducted for the investigation of flow and heat transfer characteristics of an oblique impingement jet injected to a flat plate. The finite volume method was used to discretize the governing equations based on the non-orthogonal coordinate with non-staggered variable arrangement. The $textsc{k}$-$\varepsilon$-ν(sup)'2 turbulence model was employed to consider the consider the anisotropic flow characteristics generated by the impingement jet flow. The predicted results were compared with the experimental data and those of the standard $textsc{k}$-$\varepsilon$ turbulence model. The results of the $textsc{k}$-$\varepsilon$-ν(sup)'2 model showed better agreement with the experimental data than those of the standard $textsc{k}$-$\varepsilon$ model. In order to get the optimum condition, the flow and temperature fields were calculated with a variation of inclined angle($\alpha$=30$^{\circ}$~90$^{\circ}$) and the distance between the jet exit and impingement plate-to-diameter (L/D=4~10) at a fixed Reynolds number(Re=20,000). For a small L/D, the near-peak Nusselt numbers were not significantly effected by the inclined angle. The near-peak Nusselt numbers were not significantly affected by the L/D in the case of a large $\alpha$. The overall shape of the local Nusselt numbers was influenced by both the jet orifice-to-plate spacing and the jet angle.

Experimental Investigation on Heat Transfer Characteristics in a Uniformly Heated Pipe with Pulsating Pressure (맥동 압력을 받는 가열관 내부에서의 열전달 특성에 관한 실험적 연구)

  • 이건태;강병하;이재헌;이춘식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1760-1769
    • /
    • 1992
  • An experimental study of thermal transport from a uniformly heated pipe to a pulsating flow has been carried out. Surface of the pipe is imposed with constant heat flux providing by electric heating band. This problem is of particular interest in the design of Stirling engine heat exchangers and in understanding the blood flow in the aorta. Temporal Variatiens of temperature and pressure inside the circular pipe are measured. The dependence of temperature distributions and heat transfer rate on the mean flow rate in the pipe and on the pulsating frequency is investigated in detail. The experimental results indicate that the measured temporal variations of temperature and pressure become nearly sinusoidal The amplitude of temperature variation near the pipe wall is much more substantial than that in core of the pipe. It is also found that the heat transfer rate is increased significantly as the frequency of the pulsating pressure is increased or the mean flow rate in a pipe is increased. The results obtained are also compared with those for non-pulsating flow circumstance.

Heat Transfer and Flow Measurements on the Turbine Blade Surface (터빈 블레이드 표면과 선형익렬에서의 열전달 및 유동측정 연구)

  • Lee, Dae Hee;Sim, Jae Kyung;Park, Sung Bong;Lee, Jae Ho;Yoon, Soon Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.567-576
    • /
    • 1999
  • An experimental study has been conducted to investigate the effects of the free stream turbulence intensity and Reynolds number on the heat transfer and flow characteristics In the linear turbine cascade. Profiles of the time-averaged velocity, turbulence intensity, and Reynolds stress were measured in the turbine cascade passage. The static pressure and heat transfer distributions on the blade suction and pressure surfaces were also measured. The experiments were made for the Reynolds number based on the chord length, Rec = $2.2{\times}10^4$ to $1.1{\times}10^5$ and the free stream turbulence intensity, $FSTI_1$ = 0.6% to 9.1 %. The uniform heat flux boundary condition on the blade surface was created using the gold film Intrex and the surface temperature was measured by liquid crystal, while hot wire probes were used for the flow measurements. The results show that the free stream turbulence promotes the boundary layer development and delays the flow separation point on the suction surface. It was found that the boundary layer flows on the suction surface for all Reynolds numbers tested with $FSTI_1$ = 0.6% are laminar. It was also found that the heat transfer coefficient on the blade surface increases as the free stream turbulence intensity increases and the flow separation point moves downstream with an increasing Reynolds number. The results of skin friction coefficients are in good agreement with the heat transfer results in that for $FSTI_1{\geq}2.6%$, the turbulent boundary layer separation occurs.

A Study on Heat Transfer Characteristics for Cross Flow Heat Exchanger of Staggered Arrangement (어긋나기배열 직교류 열교환기의 열전달특성에 관한 연구)

  • Yoo, Jae-Hwan;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1016-1023
    • /
    • 2012
  • Because heat exchanger consists of many circular tubes, the analysis of local heat transfer and pressure drop at the surrounding of circular tubes, performance and calculation of size, economics play important roles in design. In this study, This study conducted experiment and analysis in order to observe convective heat transfer coefficient LMTD (logarithm mean temperature difference) and pressure losses according to water temperature and air flow rate using a cross flow heat exchanger of staggered arrangement. This heat exchanger was composed of staggered arrangement for five rows and seven columns of tube banks, and the condition of experiment and analysis are $40{\sim}65^{\circ}C$ of water temperature and $5.0{\sim}12.3m^3/s$ of air flow rate. As a result of it, since air density decreases as water temperature and flow rate increases, Reynolds number decreases with characteristics of low flow velocity but mean heat transfer coefficient increases with air flow rate increase, heat transfer performance has been improved and pressure losses decreased. And since heat transfer rate shows about 8~12% and pressure drop around 0.01~7.5% error as the analysis result, the feasibility of this study could be evaluated.

Convective Heat Transfer in a Channel with an Isothermal Rectangular Beam (한 개의 등온사각빔이 부착된 채널에서의 대류열전달)

  • Kwon, Sun-Sok;Ree, Jae-Shin
    • Solar Energy
    • /
    • v.14 no.2
    • /
    • pp.75-90
    • /
    • 1994
  • Thermal energy transport in a two-dimensional horizontal and vertical channel with an isothermal rectangular beam attached to one adiabatic wall is investigated from the numerical solution of Navier-Stokes and energy equations. The solutions have been obtained for dimensionless aspect equations. The solutions have been obtained for dimensionless aspect ratios of beam, H/B=$0.25{sim}4$, Reynolds numbers, Re=$50{\sim}500$ and Grashof numbers, Gr=$0{\sim}5{\times}10^4$. The mean Nusselt number, $\overline{Nu}$ for horizontal and vertical channels shows same value at Gr=0 and increases as Gr increases and decreases as H/B increases at Re=100. $\overline{Nu}$ of vertical channel shows higher in $0.25{\leq}H/B<1.1$ and lower in $1.1{\leq}H/B{\leq}4.0$ than that of horizontal channel at $Gr=10^4$, Re=100. $\overline{Nu}$ of vertical channel shows higher in $0.25{\leq}H/B<1.1$ and lower in $1.1{\leq}H/B=1.0$ than that of horizontal channel at Re=100, $0<Gr{\leq}5{\times}10^4$. A comparison between the experimental and numerical results shows good agreement.

  • PDF