• 제목/요약/키워드: Numerical sensitivity

검색결과 1,119건 처리시간 0.029초

Modelling and Sensitivity Analysis for the Performance Improvement of a Spin Coater (스핀 코너 성능향상을 위한 모델링 및 민감도 해석)

  • 권태종;채호철;한창수;정진태;안강호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • 제9권6호
    • /
    • pp.96-102
    • /
    • 2000
  • Spinning mechanism is generally used in coasting process on grass plates. Rebounding PR(Photo Resist) which leads to occur inferiority of coating process is caused by vibrational energy of whole coating system. In this study, the sensitivity analysis is performed to analyze and reduce vibrational terms in the spin coating system. The sensitivity analysis is bared on the numerical expression of this system. By the bond graph method. power flow of each system is represented by some basic bond graph elements. Any energy domain system is modeled using the unified elements. The modelled spin coater system is verified with power spectrum data measured by FFT analyzer. As the results of verifying model parameters and sensitivity analysis, principal factors causing vibration phenomenon are mentioned. A study on vibration method in the spin coating system is discussed.

  • PDF

Numerical Predictions of Roughness Effects on the Performance Degradation of an Axial-Turbine Stage

  • Kang Young-Seok;Yoo Jae-Chun;Kang Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.1077-1088
    • /
    • 2006
  • This paper describes a numerical investigation on the performance deteriorations of a low speed, single-stage axial turbine due to use of rough blades. Numerical calculations have been carried out with a commercial CFD code, CFX-Tascflow, by using a modified wall function to implement rough surfaces on the stator vane and rotor blade. To assess the stage performance variations corresponding to 5 equivalent sand-grain roughness heights from a transition ally rough regime to a fully rough regime, stage work coefficient and total to static efficiency were chosen. Numerical results showed that both work coefficient and stage efficiency reduced as roughness height increased. Higher surface roughness induced higher blade loading both on the stator and rotor which in turn resulted in higher deviation angles and corresponding work coefficient reductions. Although, deviation angle changes were small, a simple sensitivity analysis suggested that their contributions on work coefficient reductions were substantial. Higher profile loss coefficients were predicted by higher roughness heights, especially on the suction surface of the stator and rotor. Furthermore sensitivity analysis similar to the above, suggested that additional profile loss generations due to roughness were accountable for efficiency reductions.

Identification of Mechanical Parameters of Kyeongju Bentonite Based on Artificial Neural Network Technique

  • Kim, Minseop;Lee, Seungrae;Yoon, Seok;Jeon, Min-Kyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제20권3호
    • /
    • pp.269-278
    • /
    • 2022
  • The buffer is a critical barrier component in an engineered barrier system, and its purpose is to prevent potential radionuclides from leaking out from a damaged canister by filling the void in the repository. No experimental parameters exist that can describe the buffer expansion phenomenon when Kyeongju bentonite, which is a buffer candidate material available in Korea, is exposed to groundwater. As conventional experiments to determine these parameters are time consuming and complicated, simple swelling pressure tests, numerical modeling, and machine learning are used in this study to obtain the parameters required to establish a numerical model that can simulate swelling. Swelling tests conducted using Kyeongju bentonite are emulated using the COMSOL Multiphysics numerical analysis tool. Relationships between the swelling phenomenon and mechanical parameters are determined via an artificial neural network. Subsequently, by inputting the swelling tests results into the network, the values for the mechanical parameters of Kyeongju bentonite are obtained. Sensitivity analysis is performed to identify the influential parameters. Results of the numerical analysis based on the identified mechanical parameters are consistent with the experimental values.

Parameter Calibration and Sensitivity Analysis for Numerical Modeling of Flow and Bed Changes near the Opening Gate for Sediment Release (배사구 유입부 흐름 및 하상변동 수치모의를 위한 매개변수 검정 및 민감도 분석에 관한 연구)

  • Jang, Eun-Kyung;Lim, Jong-Chul;Ji, Un;Yeo, Woon-Kwang
    • Journal of Environmental Science International
    • /
    • 제20권9호
    • /
    • pp.1151-1163
    • /
    • 2011
  • The bed change analysis near the opening gate of a dam or weir to release deposited sediments have been conducted mostly using the numerical models. However, the use of unverified input parameters in the numerical model is able to produce the different results with natural and real conditions. Also, the bed changes near the opening gate of a dam or weir calculated with a numerical model could be varied depending on the geometry extent included the downstream area with supercritical flow in the model. In addition, the different time steps could provide different results in the bed change calculation, even though other conditions such as input parameters, geometries, and total simulation time were same. Therefore, in this study, hydraulic experiments were performed to validate the eddy viscosity coefficient which is the one of important input parameters in the RMA2 model and relevant to variation of simulation results. The bed changes were calculated using the SED2D model based on flow results calculated in the RMA2 model with the verified and selected eddy viscosity coefficient and also compared with experimental results. The bed changes near the opening gate were underestimated in the numerical model comparing with experimental results except only the numerical case without the modeling section of sediment release pipe and downstream area where the supercritical flow was produced. For the simulation of minimum time steps, different shapes of scour hole were produced in numerical and physical modeling.

Sensitivity of Numerical Solutions to Time Step in a Nonlinear Atmospheric Model (비선형 대기 모형에서 수치 해의 시간 간격 민감도)

  • Lee, Hyunho;Baik, Jong-Jin;Han, Ji-Young
    • Journal of the Korean earth science society
    • /
    • 제34권1호
    • /
    • pp.51-58
    • /
    • 2013
  • An appropriate determination of time step is one of the important problems in atmospheric modeling. In this study, we investigate the sensitivity of numerical solutions to time step in a nonlinear atmospheric model. For this purpose, a simple nondimensional dynamical model is employed, and numerical experiments are performed with various time steps and nonlinearity factors. Results show that numerical solutions are not sensitive to time step when the nonlinearity factor is not influentially large and truncation error is negligible. On the other hand, when the nonlinearity factor is large (i.e., in a highly nonlinear regime), numerical solutions are found to be sensitive to time step. In this situation, smaller time step increases the intensity of the spatial filter, which makes small-scale phenomena weaken. This conflicts with the fact that smaller time step generally results in more accurate numerical solutions owing to reduced truncation error. This conflict is inevitable because the spatial filter is necessary to stabilize the numerical solutions of the nonlinear model.

Estimation of Settlement on the Crest of CFRD Subjected to Earthquake Loading Using Sensitivity Analysis (민감도분석을 통한 지진하중을 받는 CFRD 정상부 침하량 예측)

  • Ha, Ik-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • 제23권1호
    • /
    • pp.39-49
    • /
    • 2007
  • In this study, quantitative sensitivity analysis on rockfill material influencing the dam crest settlement of CFRD (Concrete-Faced Rockfill Dam) subjected to earthquake loading was carried out. The purpose of this study is to indicate the most important input parameter from the results of sensitivity analysis, to show the quantitative variation of settlement at the crest of CFR type dam during earthquake with this input parameter, and to recommend the approximate estimation method of the settlement on the crest of CFRD subjected to earthquake loading. The statistic characteristics of rockfill parameters which were obtained from large triaxial tests were evaluated. The total 108 dynamic numerical analyses (2 input earthquake, 2 magnitudes for each earthquake, 27 rockfill material property combinations) on CFRD were conducted. The global sensitivity analysis was carried out using the results of numerical analysis. From the sensitivity analysis, It was found that the crest settlement of the CFRD subjected to earthquake was absolutely affected by the shear modulus of rockfill material irrespective of the input earthquakes and the magnitude of input acceleration. On the contrary, it was found that the effect of cohesion and friction angle of rockfill was negligible. From the results of sensitivity analysis and numerical analysis, the approximate estimation method of the settlement on the crest of CFRD subjected to earthquake loading was recommended on condition that the rockfill shear modulus and simple dam information was known.

A Numerical Study of Stiffness in Point Reactor Kinetics

  • Jaegwon Yoo;H. S. Shin;Park, W. S.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.102-107
    • /
    • 1997
  • A stiffness in a dynamical system is numerically studied to investigate a sensitivity of a reactor to the delayed neutron spectra with the Doppler feedback. To test numerical procedure, we adopted a case of a reactivity accident in a point reactor model. We found that the stiffness is sensitive to a reactivity insertion rate and the delayed neutron spectra in the Doppler feedback phase. Our numerical results show that global reactor characteristics are not very sensitive to the delayed neutron spectra even though their instantaneous ones are sensitive. We present the time evolution of each precursor group explicitly.

  • PDF

Optimal Design of the Induction Heating Coil using Transient Design Sensitivity Analysis (과도상태 설계민감도를 이용한 유도가열코일의 최적설계)

  • Kwak, In-Gu;Byun, Jin-Kyu;Choi, Kyung;Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • 제49권5호
    • /
    • pp.327-337
    • /
    • 2000
  • In this paper, the design sensitivity formula for the control of the transient temperature distribution is developed using the direct differentiation method, and used for the optimal design of induction heating coil position. The temperature distribution is calculated using the heat source of the induced eddy current and heat diffusion equation. The physical property variations of the workpiece depending on the temperature are considered. The eddy current distribution and the temperature distribution are calculated with the 2D finite element procedure. The adjoint variable technique is employed in expressing the design sensitivity. The goal of the design is to have the desired distribution of the temperature on a specific region of the sensitivity. The goal of the design is to have the desired distribution of the temperature on a specific region sensitivity. The goal of the design is to have the desired distribution of the temperature on a specific region of the workpiece. The numerical example shows that the proposed design sensitivity analysis for the control of the transient temperature distribution is very useful and practical in the optimal design of induction heating coils.

  • PDF

Sensitivity Analysis of Hydrodynamic Derivatives on Characteristics of Manoeuvring Motion of Manta-type Unmanned Undersea Test Vehicle (Manta형 무인잠수정의 조종운동 특성에 미치는 유체력미계수의 민감도 해석에 관한 연구)

  • Bae, Jun-Young;Sohn, Kyoung-Ho
    • Journal of Navigation and Port Research
    • /
    • 제32권8호
    • /
    • pp.603-609
    • /
    • 2008
  • Manta-type Unmanned Undersea Test Vehicle(MUUTV) is based on the same design concept as Unmanned Undersea Vehicle called Manta Test Vehicle(MTV), which was originally built and operated by the Naval Undersea Warfare Center(Lisiewicz et al., 2000, Sirmalis et al. 2001). The authors carried out the sensitivity analysis of the response of manoeuvring motion of MUUTV to changes in hydrodynamic derivatives, In order to calculate the sensitivity indices of hydrodynamic derivatives on MUUTV, the method by Sen(2000) was adopted Basically the dynamic mathematical model with six degrees of freedom by Feldman(1979) is used but a little revised, refered to Sohn et al.(2006) and some experiment in circulating water channel. Through the present research, some hydrodynamic derivatives of significance are found out, and also the numerical simulation using simplified mathematical model based on result of sensitivity analysis is ascertained to be enough for prediction of manoeuvring characteristics of MUUTV.

Numerical Analysis for Conductance Probes, for the Measurement of Liquid Film Thickness in Two-Phase Flow

  • No, Hee-Cheon;F. Mayinger
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.450-455
    • /
    • 1995
  • A three-dimensional numerical tool is developed to calculate the potential distribution, electric field, and conductance for any types of conductance probes immersed in the wavy liquid film with various shapes of its free surface. The tool is validated against various analytical solutions. It is applied to find out the characteristics of the wire-wire probe, the flush-wire probe and the flush-flush probe in terms of resolution, linearity, and sensitivity. The wire-wire probe shows high resolution and excellent linearity for various film thickness, but comparably low sensitivity for low film thickness fixed. The flush-wire probe shows good linearity and high sensitivity for varying film thickness, but resolution degrading with an increase in film thickness. In order to check the applicability of the three types of probes in the real situation, the Korteweg-de Vries(KdV) two-dimensional solitary wave is simulated. The wire-wire probe is strongly affected by the installation direction of the two wires; when the wires are installed perpendicularly to the flow direction, the wire-wire probe shows large distortion of the solitary wave. In order to measure the transverse profile of waves, the wire-wire probes and the flush-wire probes are required to be separately installed 2mm and 2mm, respectively.

  • PDF