• Title/Summary/Keyword: Numerical sensitivity

Search Result 1,119, Processing Time 0.03 seconds

Design Sensitivity Analysis of Zwicker's Loudness Using Adjoint Variable Method (보조변수법을 이용한 Zwicker 라우드니스의 설계민감도)

  • Wang, Se-Myung;Kwon, Dae-Il;Kim, Chaw-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1432-1436
    • /
    • 2006
  • Feasibility of optimizing Zwicker's loudness has been shown by using MSC/NASTRAN, SYSNOISE, and a semi-analytical design sensitivity by Wang and Kang. Design sensitivity analysis of Zwicker's loudness is developed by using ANSYS, COMET, and an adjoint variable method in order to reduce computation. A numerical example shows significant reduction of computation time for design sensitivity analysis.

  • PDF

Ride Sensitivity Analysis of a Train Model with Non-linear Suspension Elements (비선형 현가요소를 가진 철도차량의 승차감 민감도 해석)

  • Tak, Tae-oh;Kim, Myung-hun
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.233-240
    • /
    • 1998
  • In this study, ride sensitivity analysis of train with non-linear suspension elements is performed. Non-linear characteristics of springs and dampers for primary and secondary suspensions of a train is parameterized. Equation of motion of the train model is derived, and using the direct differentiation method, sensitivity equations are obtained. For a nominal ride quality performance index, sensitivity analysis with respect to various design parameters regarding non-linear suspension parameters is carried out.

  • PDF

A Study on Mesh Sensitivity of 3-D Homoginized Crack Model for Concrete Fracture Analysis

  • Nam Jin Won;Song Ha Won;Byun Keun Joo;Bang Choon Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.462-465
    • /
    • 2004
  • Since quasi-brittle materials like concrete show strain localization behavior accompanied by strain softening, a numerical drawback such as mesh sensitivity is appeared in the finite element analysis. In this paper, the so-called homogenized crack model which was introduced for three dimensional finite element analysis of fracture in concrete is studied for the mesh size dependence problem in fracture analysis. A homogenized crack element having a velocity discontinuity. is averaged to remove the mesh sensitivity in finite element analysis of concrete fracture. Numerical examples show that softening behavior of concrete fracture is successfully predicted without mesh sensitivity using the homogenized crack model.

  • PDF

Sensitivity Study of Smoothed Particle Hydrodynamics

  • Kim, Yoo-Il;Nam, Bo-Woo;Kim, Yong-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.4
    • /
    • pp.29-54
    • /
    • 2007
  • Systematic sensitivity analysis of smoothed particle hydrodynamics method (SPH), a gridless Lagrangian particle method, was carried out in this study. Unlike traditional grid-based numerical schemes, systematic sensitivity study for computational parameters is very limited for SPH. In this study, the effect of computational parameters in SPH simulation is explored through two-dimensional dam-breaking and sloshing problem. The parameters to be considered are the speed of sound, the type of kernel function, the frequency of density re-initialization, particle number, smoothing length and pressure extraction method. Through a series of numerical test, detailed information was obtained about how SPH solution can be more stabilized and improved by adjusting computational parameters.

Shape Optimization of Piezoelectric Materials for Piezoelectric-Structure-Acoustic System (압전-구조-음향 연성계의 압전 액츄에이터 최적설계)

  • Wang, Se-Myung;Lee, Kang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1627-1632
    • /
    • 2000
  • Recently, piezoelectric materials have attracted considerable attention because of its self-sensing and actuating properties. To model smart structures, numerical modeling of structures with piezoelectric devices is essential. As many factors affect the performance of smart structures, optimization of these parameters is necessary. In this paper, the shape design sensitivity analysis of the 3D piezoelectric and structural elements is developed and shape optimization is performed. For the evaluation of the sensitivity, the finite element method is used. For the shape sensitivity, the domain velocity field is calculated. An acoustic cavity model is presented as a numerical example to study the feasibility of the formulation. The continuum sensitivity is compared with the results of the finite difference method by ANSYS. And the sequential linear programming (SLP) algorithm is used as the optimization algorithm.

  • PDF

Sensitivity analysis to determine seismic retrofitting column location in reinforced concrete buildings

  • Seo, Hyunsu;Park, Kyoungsub;Kwon, Minho;Kim, Jinsup
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.77-86
    • /
    • 2021
  • Local school buildings are critical facilities that can provide shelter in disasters such as earthquakes, so they must be more resistant to seismic forces than other structures. In this study, a sensitivity analysis was conducted to determine which columns-as the most critical members in a reinforced concrete building-most urgently require seismic retrofitting. The sensitivity analysis was conducted using an optimization technique with the location of each column as a parameter. A numerical model was developed to simulate a realistic collapse mode through a three-dimensional dynamic analysis. Based on numerical analysis results, it was found that the columns positioned in the lower floors, such as the first floor and in the outer part of a building, urgently require retrofitting. For reinforcement of the RC columns, which has been proven for its performance in previous research, was applied. Through this study, the importance of appropriate retrofitting is demonstrated. Further, a method for determining the appropriate location for retrofitting-when retrofitting is not possible on the entire structure-is presented.

Improvement of Sensitivity Based Concurrent Subspace Optimization Using Automatic Differentiation (자동미분을 이용한 민감도기반 분리시스템동시최적화기법의 개선)

  • Park, Chang-Gyu;Lee, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.182-191
    • /
    • 2001
  • The paper describes the improvement on concurrent subspace optimization(CSSO) via automatic differentiation. CSSO is an efficient strategy to coupled multidisciplinary design optimization(MDO), wherein the original design problem is non-hierarchically decomposed into a set of smaller, more tractable subspaces. Key elements in CSSO are consisted of global sensitivity equation, subspace optimization, optimum sensitivity analysis, and coordination optimization problem that require frequent use of 1st order derivatives to obtain design sensitivity information. The current version of CSSO adopts automatic differentiation scheme to provide a robust sensitivity solution. Automatic differentiation has numerical effectiveness over finite difference schemes tat require the perturbed finite step size in design variable. ADIFOR(Automatic Differentiation In FORtran) is employed to evaluate sensitivities in the present work. The use of exact function derivatives facilitates to enhance the numerical accuracy during the iterative design process. The paper discusses how much the automatic differentiation based approach contributes design performance, compared with traditional all-in-one(non-decomposed) and finite difference based approaches.

Optimal Preform Design in Powder Forging by the Design Sensitivity (설계민감도를 이용한 분말단조 공정에서의 최적 예비성형체 설계)

  • 정석환;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.113-116
    • /
    • 1998
  • A derivative based approach to process optimal design in powder forging is presented. The process model, the formulation for process optimal design, and the schemes for the evaluation of the design sensitivity, and an iterative procedure for the optimization are described in detail. The validity of the schemes for the evaluation of the design sensitivity is examined by performing numerical tests. The capability of the proposed approach to deal with diverse process parameters and objective functions is demonstrated through applications to some selected process design problems.

  • PDF

Appicability Evaluations of Dam Breach Floodwave Models (댐 붕괴 수치모형에 대한 적용성 평가)

  • Han, Geon-Yeon;Lee, Jae-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.189-198
    • /
    • 1998
  • Five dam-break floodwave models are t재 field data sets. The models included FLDWAV, SMPDBK, HEC-1, Tr66, and HEC Dimensionless Graph. The field data sets documented the disasters at Teton dam, and Yeunchun dam. The FLDWAV results are uesd to test the sensitivity of the floodwave to variations in Manning's roughness coefficient, breach size, and bottom slope. The HEC-1 analysis includes testing the sensitivity of the results to model parameters. The TR66 model and FLDWAV, with channel routing by TR66 in both cases. SMPDBK and the Dimensionless Graph procedure are applied without particular difficulties being encountered in both real world cases. It is necessary to analyze numerical limit of existing numerical models and then to apply the relatively accurate numerical model in real basin. It is found that FLDWAV model is superior in numerical accuracy and stability to any other model. This study will contribute to improve defect of numerical models and develop more precise numerical model for a efficient and rapid dam breach flood disaster predict.

  • PDF

Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell

  • Dai, Zuocai;Jiang, Zhiyong;Zhang, Liang;Habibi, Mostafa
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.175-189
    • /
    • 2021
  • In this article, frequency characteristics, and sensitivity analysis of a size-dependent laminated composite cylindrical nanoshell under bi-directional thermal loading using Nonlocal Strain-stress Gradient Theory (NSGT) are presented. The governing equations of the laminated composite cylindrical nanoshell in thermal environment are developed using Hamilton's principle. The thermodynamic equations of the laminated cylindrical nanoshell are obtained using First-order Shear Deformation Theory (FSDT) and Fourier-expansion based Generalized Differential Quadrature element Method (FGDQM) is implemented to solve these equations and obtain natural frequency and critical temperature of the presented model. The novelty of the current study is to consider the effects of bi-directional temperature loading and sensitivity parameter on the critical temperature and frequency characteristics of the laminated composite nanostructure. Apart from semi-numerical solution, a finite element model was presented using the finite element package to simulate the response of the laminated cylindrical shell. The results created from finite element simulation illustrates a close agreement with the semi-numerical method results. Finally, the influences of temperature difference, ply angle, length scale and nonlocal parameters on the critical temperature, sensitivity, and frequency of the laminated composite nanostructure are investigated, in details.