• Title/Summary/Keyword: Numerical optimization

Search Result 2,308, Processing Time 0.026 seconds

CFD and surrogates-based inducer optimization

  • Kratky, Tomas;Zavadil, Lukas;Doubrava, Vit
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.213-221
    • /
    • 2016
  • Due to the nature of cavitation numerical analyses, computational optimization of a pump with respect to the cavitation properties is extremely demanding. In this paper it is shown how a combination of Transient Blade Row (TBR) method and some simplifications can be used for making the optimization process more efficient and thus possible on current generation of hardware. The aim of the paper is not the theory of hydraulic design. Instead, the practical aspects of numerical optimization are shown. This is done on an example of a radial pump and a combination of ANSYS CFX, ANSYS software tools and custom scripts is used. First, a comparison of TBR and fully-transient simulation is made. Based on the results, the TBR method is chosen and a parametric model assembled. Design of Experiment (DOE) table is computed and the results are used for sensitivity analysis. As the last step, the final design is created and computed as fully-transient. In conclusion, the results are discussed.

A Numerical Approach for Station Keeping of Geostationary Satellite Using Hybrid Propagator and Optimization Technique

  • Jung, Ok-Chul;No, Tae-Soo;Kim, Hae-Dong;Kim, Eun-Kyou
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.122-128
    • /
    • 2007
  • In this paper, a method of station keeping strategy using relative orbital motion and numerical optimization technique is presented for geostationary satellite. Relative position vector with respect to an ideal geostationary orbit is generated using high precision orbit propagation, and compressed in terms of polynomial and trigonometric function. Then, this relative orbit model is combined with optimization scheme to propose a very efficient and flexible method of station keeping planning. Proper selection of objective and constraint functions for optimization can yield a variety of station keeping methods improved over the classical ones. Nonlinear simulation results have been shown to support such concept.

Aerodynamic Design Optimization of an Jet Fan using the Response Sruface Method (반응면 기법을 이용한 제트송풍기의 공력학적 수치최적설계)

  • Seo Seoung-Jin;Kim Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.635-638
    • /
    • 2002
  • In this study, three-dimensional imcompressible viscous flow analysis and optimization using response surface method are presented for the design of a jet fan. Steady, imcompressible, three-dimensional Reynolds averaged Wavier-Stokes equations are used as governing equations, and standard $k-{\varepsilon}$ turbulence model is chosen as a turbulence model. Governimg equations are discretized using finite volume method. Sweep angles are used as design variables for the shape optimization of the impeller in response surface method. The experimental points which are needed to construct response surface are obtained from the D-optimal design and finally the shape of impeller Is achieved from using a numerical optimization for the response surface which is obtained from CFD.

  • PDF

Optimization Method for a Coupled Design, Considering Robustness (강건성을 고려한 연성설계의 최적화 방법)

  • Kang, Dong-Heon;Song, Byoung-Cheol;Park, Young-Chul;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.8-15
    • /
    • 2008
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. Based on the independence axiom of axiomatic design theory that illustrates the relationship between desired specifications and design parameters, the designs can be classified into three types: uncoupled, decoupled and coupled. To best approach the target performance with the maximum robustness is one of the main functional requirements of a mechanical system. Most engineering designs are pertaining to either coupled or decoupled ones, but these designs cannot currently accomplish a real robustness thus a trade-off between performance and robustness has to be made. In this research, the game theory will be applied to optimize the trade-off.

  • PDF

Hopfield neuron based nonlinear constrained programming to fuzzy structural engineering optimization

  • Shih, C.J.;Chang, C.C.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.485-502
    • /
    • 1999
  • Using the continuous Hopfield network model as the basis to solve the general crisp and fuzzy constrained optimization problem is presented and examined. The model lies in its transformation to a parallel algorithm which distributes the work of numerical optimization to several simultaneously computing processors. The method is applied to different structural engineering design problems that demonstrate this usefulness, satisfaction or potential. The computing algorithm has been given and discussed for a designer who can program it without difficulty.

The Integrated Design Optimization Technique for Spatial Structures

  • Lee, Sang-Jin
    • Architectural research
    • /
    • v.14 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • The technique of integrated design optimization is proposed to design spatial structures. Various element technologies such as topology optimization, layout editing and size optimization processes are used in an integrated manner to improve the performance of spatial structures. In order to demonstrate the present technique, a unit spatial structure is optimized and numerical results are described here.

Topology optimization of the photovoltaic panel connector in high-rise buildings

  • Lu, Xilin;Xu, Jiaqi;Zhang, Hongmei;Wei, Peng
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.465-475
    • /
    • 2017
  • Photovoltaic (PV) panels are used in high-rise buildings to convert solar energy to electricity. Due to the considerable energy consumption of high-rise buildings, applying PV technology is of great significance to energy saving. In the application of PV panels, one of the most important construction issues is the connection of the PV panel with the main structures. One major difficulty of the connection design is that the PV panel connection consists of two separate components with coupling and indeterminate dimension. In this paper, the gap element is employed in these two separated but coupled components, i.e., hook and catch. Topology optimization is applied to optimize and design the cross-section of the PV panel connection. Pareto optimization is conducted to operate the optimization subject to multiple load scenarios. The initial design for the topology optimization is determined by the common design specified by the Technical Code for Glass Curtain Wall Engineering (JGJ 102-2003). Gravity and wind load scenarios are considered for the optimization and numerical analysis. Post analysis is conducted for the optimal design obtained by the topology optimization due to the manufactory requirements. Generally, compared with the conventional design, the optimized connector reduces material use with improved structural characteristics.

Concurrent topology optimization of composite macrostructure and microstructure under uncertain dynamic loads

  • Cai, Jinhu;Yang, Zhijie;Wang, Chunjie;Ding, Jianzhong
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.267-280
    • /
    • 2022
  • Multiscale structure has attracted significant interest due to its high stiffness/strength to weight ratios and multifunctional performance. However, most of the existing concurrent topology optimization works are carried out under deterministic load conditions. Hence, this paper proposes a robust concurrent topology optimization method based on the bidirectional evolutionary structural optimization (BESO) method for the design of structures composed of periodic microstructures subjected to uncertain dynamic loads. The robust objective function is defined as the weighted sum of the mean and standard deviation of the module of dynamic structural compliance with constraints are imposed to both macro- and microscale structure volume fractions. The polynomial chaos expansion (PCE) method is used to quantify and propagate load uncertainty to evaluate the objective function. The effective properties of microstructure is evaluated by the numerical homogenization method. To release the computation burden, the decoupled sensitivity analysis method is proposed for microscale design variables. The proposed method is a non-intrusive method, and it can be conveniently extended to many topology optimization problems with other distributions. Several numerical examples are used to validate the effectiveness of the proposed robust concurrent topology optimization method.

Optimization of Extremely Low Numerical-Dispersion FDTD Method Based on H(2,4) Scheme for Wideband Analysis of Lossy Dielectric (H(2,4) 기법을 기반으로 한 저분산 FDTD 기법의 손실 매질의 광대역 해석을 위한 최적화 방법)

  • Oh, Ilyoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.225-232
    • /
    • 2018
  • This paper proposed the optimization method of the extremely low numerical-dispersion finite-difference time-domain (ELND-FDTD) method based on the H(2,4) scheme for wideband and extremely accurate electromagnetic properties of lossy material, which has a constant conductivity and relative permittivity. The optimized values of three variables are calculated for the minimum numerical dispersion errors of the proposed FDTD method. The excellent accuracy of the proposed method is verified by comparing the calculated results of three different FDTD methods and the analytical results of the two-dimensional dielectric cylinder scattering problem.

A Study on Improving the Impact Force of Impact Hammer Drill (충격햄머드릴의 타격력 향상을 위한 연구)

  • 김재환;정재천;박병규;백복현
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.669-679
    • /
    • 1997
  • This paper deals with a study of striker type impact hammer drill for improving the drilling performance. The study was performed through a numerical simulation of the impact hammer mechanism and an experimental comparison of the numerical simulation results was followed. Optimization of the impact mechanism was also performed. The numerical model of the impact hammer drill takes into account the striker motion and the effects of the pressure in the cylinder as well as the friction acting on the striker. The equation of motion is solved with the pressure equation in the cylinder including the friction force. The friction is considered as a combination of Coulomb friction and viscous damping friction. At the moment of impact, an ideal impact model that uses restitution coefficient is used to calculate the sudden change of the striker motion. The numerically simulated impact force shows a good agreement with the experimental result and thus, the validity of the numerical model is proven. Based upon the proposed model, an optimization was performed to improve the impact force of the hammer drill. The objective function is to maximize the impact force and the used design variables are striker mass, frequency of piston, bit guide mass, cylindrical diameter and dimensions of the mechanism components. Each design variable and some other conditions that are essential to manitain normal operation of the hammer drill are considered as constraints. The optimized result show a remarkable improvement in impact force and an experimental proof was investigated.

  • PDF