• 제목/요약/키워드: Numerical models

검색결과 4,291건 처리시간 0.035초

Finite element modeling of RC columns made of inferior concrete mix strengthened with CFRP sheets

  • Khaled A. Alawi, Al-Sodani;Muhammad Kalimur ,Rahman;Mohammed A., Al-Osta;Omar S. Baghabra, Al-Amoudi
    • Earthquakes and Structures
    • /
    • 제23권5호
    • /
    • pp.403-417
    • /
    • 2022
  • Reinforced concrete (RC) structures with low-strength RC columns are rampant in several countries, especially those constructed during the early 1960s and 1970s. The weakness of these structures due to overloading or some natural disasters such as earthquakes and building age effects are some of the main reasons to collapse, particularly with the scarcity of data on the impact of aspect ratio and corner radius on the confinement effectiveness. Hence, it is crucial to investigate if these columns (with different aspect ratios) can be made safe by strengthening them with carbon fiber-reinforced polymers (CFRP) sheets. Therefore, experimental and numerical studies of CFRP-strengthened low-strength reinforced concrete short rectangular, square, and circular columns were studied. In this investigation, a total of 6 columns divided into three sets were evaluated. The first set had two circular cross-sectional columns, the second set had two square cross-section columns, and the third set has two rectangular cross-section columns. Furthermore, FEM validation has been conducted for some of the experimental results obtained from the literature. The experimental results revealed that the confinement equations for RC columns as per both CSA and ACI codes could give incorrect results for low-strength concrete. The control specimen (unstrengthened ones) displayed that both ACI and CSA equations overestimate the ultimate strength of low-strength RC columns by order of extent. For strengthened columns with CFRP, the code equations of CSA and ACI code overestimate the maximum strength by around 6 to 13% and 23 to 29%, respectively, depending on the cross-section of the column (i.e., square, rectangular, or circular). Results of finite element models (FEMs) showed that increasing the layer number of new commonly CFRP type (B) from one to 3 for circular columns can increase the column's ultimate loads by around eight times compared to unjacketed columns. However, in the case of strengthened square and rectangular columns with CFRP, the increase of the ultimate loads of columns can reach up to six times and two times, respectively.

A novel design method for improving collapse resistances of multi-story steel frames with unequal spans using steel braces

  • Zheng Tan;Wei-hui Zhong;Bao Meng;Shi-chao Duan;Hong-chen Wang;Xing-You Yao;Yu-hui Zheng
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.253-267
    • /
    • 2023
  • The bearing capacities resisted by the two-bay beams of multi-story planar frames with unequal spans under column removal scenarios differ considerably owing to the asymmetric stress on the left and right beams connected to the failed column and cause the potential for beams with larger span-to-depth ratios to be unable to exert effectively, which is disadvantageous for resisting the vertical load in unequal-span frame structures. To address this problem, the structural measure of adding braces to the weak bays of multi-story unequal-span frames was proposed, with the objective of achieving a coordinated stress state in two-bay beams with unequal spans, thereby improving the collapse resistance of unequal-span frame structures. Before conducting the numerical simulation, the modeling methods were verified by previous experimental results of two multi-story planar frames with and without steel braces. Thereafter, the effects of the tensile and compressive braces on the collapse behavior of the frame structures were elucidated. Then, based on the mechanical action laws of the braces throughout the collapse process, a detailed design method for improving the collapse resistance of unequal-span frame structures was proposed. Finally, the proposed design method was verified by using sufficient example models, and the results demonstrated that the design method has good application prospects and high practical value.

선형 매칭 기법을 활용한 해저 샌드위치 파이프의 복합하중 영향도 분석 (Investigating the Subsea Sandwich Pipeline Integrity under Complex Loadings)

  • 박거락;송규;최영재;조락균;김충수
    • 한국압력기기공학회 논문집
    • /
    • 제17권2호
    • /
    • pp.119-125
    • /
    • 2021
  • Subsea pipelines are widely used to transport hydrocarbons from ultra-deep seawater to facilities on the coast. A sandwich pipe is a pipe-in-pipe system in which the annulus between the two concentric steel pipes is filled with polymer cores and fillers for insulation and structural reinforcement. Sandwich pipeline is always exposed to complex loading such as bending moment, bulking, internal and external pressures caused by installation, operation and environmental factors. This research provides insights into the structural integrity of sandwich pipeline exposed to complex loading conditions using a linear matching method (LMM). The finite element model of the sandwich pipeline has been generated from previous research, and the model validation is performed by comparing the results of the linear analysis between the two models. The temperature dependent material properties are used to simulate the behavior of real pipeline, and the elastic-perfectly plastic (EPP) model has been taken into account for the material non-linearity. Numerical results provide comprehensive insights into the structural response of the sandwich pipeline under monotonic and cyclic loading and provide notable points about the evaluation of the plastic collapse limit and the elastic shakedown limit of the sandwich pipeline.

A NEW FEEDBACK TECHNIQUE FOR TUNNEL SAFETY BY USING MEASURED DISPLACEMENTS DURING TUNNEL EXCAVATION

  • Sihyun PARK;Yongsuk SHIN;Sungkun PARK
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.432-439
    • /
    • 2009
  • This research project was carried out to develop the technique to assess quantitatively and rapidly the stability of a tunnel by using the measured displacement at the tunnel construction site under excavation. To achieve this purpose, a critical strain concept was introduced and applied to an assessment of a tunnel under construction. The new technique calculates numerically the strains of the surrounding ground by using the measured displacements during excavation. A numerical practical system was developed based on the proposed analysis technique in this study. The feasibility of the developed analysis module was verified by incorporating the analysis results obtained by commercial programs into the developed analysis module. To verify the feasibility of the developed analysis module, analysis results of models both elastic and elasto-plastic grounds were investigated for the circular tunnel design. Then the measured displacements obtained in the field are utilized practically to assess the safety of tunnels using critical strain concept. It was verified that stress conditions of in-situ ground and ground material properties were accurately assessed by inputting the calculated displacement obtained by commercial program into this module for the elastic ground. However for the elasto-plastic ground, analysis module can reproduce the initial conditions more closely for the soft rock ground than for the weathered soil ground. The stability of tunnels evaluated with two types of strains, that is, the strains obtained by dividing the crown displacement into a tunnel size and the strains obtained by using the analysis module. From this study, it is confirmed that the critical strain concept can be fully adopted within the engineering judgment in practical tunnel problems and the developed module can be used as a reasonable tool for the assessment of the tunnel stability in the field.

  • PDF

다중셀 SC-FDMA를 위한 무선자원 관리기법에 관한연구 (A Study on Radio Resource Management for Multi-cell SC-FDMA Systems)

  • 정용주
    • 한국산업정보학회논문지
    • /
    • 제15권4호
    • /
    • pp.7-15
    • /
    • 2010
  • 본 연구는 SC-FDMA(Single Carrier-Frequency Division Multiple Access) 접속기술을 사용하는 LTE(Long Term Evolution) 상향링크의 성능을 최대화하기 위한 무선자원관리(radio resource management) 기법을 제안한다. 셀간의 상호작용을 고려해야하는 다중셀(multi-cell) 시스템을 대상으로 하여 단일셀 대상의 기존 SC-FDMA관련 연구와는 차별화된다. 본 연구는 무선자원관리를 무선자원 계획단계(planning phase)와 운용단계(operation phase)로 구분하여 정의한다. 계획단계는 마스터 eBN(evolved-NodeB)가 소속된 eNB에 연속적인 무선자원(RB; radio bearer)를 배정하기 위한 것이고 운용단계는 eNB가 마스터 eBN로부터 배정받은 RB를 단말기에 할당하기 위한 것이다. 두 단계에 대하여 각각 최적화 문제를 모형화하고 각 모형에 대한 탐색적 해법을 제시한다. 제시하는 해법은 인접해중에서 목적함수 개선치가 가장 높은 방향으로 이동하는 일반적인 형태를 띄고 있다. 다수의 실험결과를 통하여 두 알고리즘의 성능과 특징을 분석하였다. 본 연구는 다중셀 SC-FDMA 시스템을 대상으로 효율적인 무선자원 관리 기법을 개발하기 위한 연구에 선구자적인 역할을 할 것으로 기대된다.

Development of a predictive functional control approach for steel building structure under earthquake excitations

  • Mohsen Azizpour;Reza Raoufi;Ehsan Kazeminezhad
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.187-198
    • /
    • 2023
  • Model Predictive Control (MPC) is an advanced control approach that uses the current states of the system model to predict its future behavior. In this article, according to the seismic dynamics of structural systems, the Predictive Functional Control (PFC) method is used to solve the control problem. Although conventional PFC is an efficient control method, its performance may be impaired due to problems such as uncertainty in the structure of state sensors and process equations, as well as actuator saturation. Therefore, it requires the utilization of appropriate estimation algorithms in order to accurately evaluate responses and implement actuator saturation. Accordingly, an extended PFC is presented based on the H-ifinity (H∞) filter (HPFC) while considering simultaneously the saturation actuator. Accordingly, an extended PFC is presented based on the H-ifinity (H∞) filter (HPFC) while considering the saturation actuator. Thus, the structural responses are formulated by two estimation models using the H∞ filter. First, the H∞ filter estimates responses using a performance bound (𝜃). Second, the H∞ filter is converted into a Kalman filter in a special case by considering the 𝜃 equal to zero. Therefore, the scheme based on the Kalman filter (KPFC) is considered a comparative model. The proposed method is evaluated through numerical studies on a building equipped with an Active Tuned Mass Damper (ATMD) under near and far-field earthquakes. Finally, HPFC is compared with classical (CPFC) and comparative (KPFC) schemes. The results show that HPFC has an acceptable efficiency in boosting the accuracy of CPFC and KPFC approaches under earthquakes, as well as maintaining a descending trend in structural responses.

Dynamic response of a laminated hybrid composite cantilever beam with multiple cracks & moving mass

  • Saritprava Sahoo;Sarada Prasad Parida;Pankaj Charan Jena
    • Structural Engineering and Mechanics
    • /
    • 제87권6호
    • /
    • pp.529-540
    • /
    • 2023
  • A novel laminated-hybrid-composite-beam (LHCB) of glass-epoxy infused with flyash and graphene is constructed for this study. The conventional mixture-rule and constitutive-relationship are modified to incorporate filler and lamina orientation. Eringen's non-local-theory is used to include the filler effect. Hamilton's principle based on fifth-order-layer-wise-shear-deformation-theory is applied to formulate the equation of motion. The analogous shear-spring-models for LHCB with multiple-cracks are employed in finite-element-analysis (FEA). Modal-experimentations are conducted (B&K-analyser) and the findings are compared with theoretical and FEA results. In terms of dimensionless relative-natural-frequencies (RNF), the dynamic-response in cantilevered support is investigated for various relative-crack-severities (RCSs) and relative-crack-positions (RCPs). The increase of RCS increases local-flexibility in LHCB thus reductions in RNFs are observed. RCP is found to play an important role, cracks present near the end-support cause an abrupt drop in RNFs. Further, multiple cracks are observed to enhance the nonlinearity of LHCB strength. Introduction of the first to third crack in an intact LHCB results drop of RNFs by 8%, 10%, and 11.5% correspondingly. Also, it is demonstrated that the RNF varies because of the lamina-orientation, and filler addition. For 0° lamina-orientation the RNF is maximum. Similarly, it is studied that the addition of graphene reduces weight and increases the stiffness of LHCB in contrast to the addition of flyash. Additionally, the response of LHCB to moving mass is accessed by appropriately modifying the numerical programs, and it is noted that the successive introduction of the first to ninth crack results in an approximately 40% to 120% increase in the dynamic-amplitude-ratio.

Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading

  • Abedini, Masoud;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.389-408
    • /
    • 2022
  • Residual capacity is defined as the load carrying capacity of an RC column after undergoing severe damage. Evaluation of residual capacity of RC columns is necessary to avoid damage initiation in RC structures. The central aspect of the current research is to propose an empirical formula to estimate the residual capacity of RC columns after undergoing severe damage. This formula facilitates decision making of whether a replacement or a repair of the damaged column is adequate for further use. Available literature mainly focused on the simulation of explosion loads by using simplified pressure time histories to develop residual capacity of RC columns and rarely simulated the actual explosive. Therefore, there is a gap in the literature concerning general relation between blast damage of columns with different explosive loading conditions for a reliable and quick evaluation of column behavior subjected to blast loading. In this paper, the Arbitrary Lagrangian Eulerian (ALE) technique is implemented to simulate high fidelity blast pressure propagations. LS-DYNA software is utilized to solve the finite element (FE) model. The FE model is validated against the practical blast tests, and outcomes are in good agreement with test results. Multivariate linear regression (MLR) method is utilized to derive an analytical formula. The analytical formula predicts the residual capacity of RC columns as functions of structural element parameters. Based on intensive numerical simulation data, it is found that column depth, longitudinal reinforcement ratio, concrete strength and column width have significant effects on the residual axial load carrying capacity of reinforced concrete column under blast loads. Increasing column depth and longitudinal reinforcement ratio that provides better confinement to concrete are very effective in the residual capacity of RC column subjected to blast loads. Data obtained with this study can broaden the knowledge of structural response to blast and improve FE models to simulate the blast performance of concrete structures.

Three-dimensional numerical analysis of nonlinear phenomena of the tensile resistance of suction caissons

  • Azam, Arefi;Pooria, Ahad;Mehdi, Bayat;Mohammad, Silani
    • Geomechanics and Engineering
    • /
    • 제32권3호
    • /
    • pp.255-270
    • /
    • 2023
  • One of the main parameters that affect the design of suction caisson-supported offshore structures is uplift behavior. Pull-out of suction caissons is profoundly utilized as the offshore wind turbine foundations accompany by a tensile resistance that is a function of a complex interaction between the caisson dimensions, geometry, wall roughness, soil type, load history, pull-out rate, and many other parameters. In this paper, a parametric study using a 3-D finite element model (FEM) of a single offshore suction caisson (SOSC) surrounded by saturated soil is performed to examine the effect of some key factors on the tensile resistance of the suction bucket foundation. Among the aforementioned parameters, caisson geometry and uplift loading as well as the difference between the tensile resistance and suction pressure on the behavior of the soil-foundation system including tensile capacity are investigated. For this purpose, a full model including 3-D suction caisson, soil, and soil-structure interaction (SSI) is developed in Abaqus based on the u-p formulation accounting for soil displacement (u) and pore pressure, P.The dynamic responses of foundations are compared and validated with the known results from the literature. The paper has focused on the effect of geometry change of 3-D SOSC to present the soil-structure interaction and the tensile capacity. Different 3-D caisson models such as triangular, pentagonal, hexagonal, and octagonal are employed. It is observed that regardless of the caisson geometry, by increasing the uplift loading rate, the tensile resistance increases. More specifically, it is found that the resistance to pull-out of the cylinder is higher than the other geometries and this geometry is the optimum one for designing caissons.

시공 중 흙막이 벽체 수평변위 예측을 위한 앙상블 모델 개발 (Development of an Ensemble Prediction Model for Lateral Deformation of Retaining Wall Under Construction)

  • 서승환;정문경
    • 한국지반공학회논문집
    • /
    • 제39권4호
    • /
    • pp.5-17
    • /
    • 2023
  • 도심지 지하굴착 공사가 대형화되면서 공사 중 안전사고에 대한 위험요인이 더욱 증가하고 있다. 이에 따라 공사현장의 위험요소를 모니터링하고 사전에 예측할 수 있는 기술이 필요하다. 굴착으로 인한 흙막이 벽체의 변형을 예측하는 방법에는 크게 경험식과 수치해석 두 가지 방법으로 분류할 수 있으며, 최근에는 인공지능 기술의 발달과 함께 머신러닝 기법을 활용한 예측 모델이 한 가지 방법으로 자리 잡고 있다. 본 연구에서는 예측력과 효율성이 우수한 부스팅 계열 알고리즘 및 앙상블 모델을 이용하여 시공 중 흙막이 벽체 변형을 예측하는 모델을 구축하였다. 지하흙막이 공사의 설계-시공-유지관리 과정에서 도출되는 자료들을 복합적으로 활용하여 데이터베이스를 구축하고, 이 자료를 토대로 학습모델을 만들고 성능을 평가하였다. 모델 성능 평가 결과, 높은 정확도로 흙막이 벽체 변형을 예측할 수 있었으며, 지반계측 자료를 학습에 활용함으로써 실제 시공과정의 특성이 반영된 예측결과를 제시할 수 있었다. 본 연구에서 구축한 예측 모델을 활용하여 시공 중 흙막이 벽체의 안정성 평가 및 모니터링에 활용할 수 있을 것으로 기대된다.