• 제목/요약/키워드: Numerical model test

검색결과 2,336건 처리시간 0.031초

압밀시험의 수치해석에 의한 MCC 모델과 SSC 모델 비교 (Comparison of MCC and SSC Models Based on Numerical Analysis of Consolidation Test)

  • 권병해;임성훈
    • 한국농공학회논문집
    • /
    • 제66권2호
    • /
    • pp.1-12
    • /
    • 2024
  • In order to integrate two consolidation theories of Terzaghi's consolidation theory and Mesri's secondary compression theory and to identify a model suitable for analyzing stress-strain behavior over time, numerical analysis on consolidation tests were conducted using a modified cam-clay model and a soft soil creep model and the following conclusions were obtained. The results of numerical analysis applying the theory that a linear proportional relationship is established between the void ratio at logarithmic scale and the permeability coefficient at logarithmic scale is better agreement with the result of oedometer test than the results of applying constant hydraulic conductivity. The modified cam-clay model is a model that does not include secondary compression, but the slope of the normal consolidation line corresponding to the compression index of the standard consolidation test includes secondary compression, so the actual settlement curve over time is lower than the predicted value through numerical analysis. It always gets smaller. Other previous studies that applied Terzaghi's consolidation theory to consolidation test analysis showed the same results and were cross-confirmed. The soft soil creep model, which includes secondary compression in the theory, showed good agreement in all sections including secondary compression in the consolidation test results. It was judged appropriate to use a soft soil creep model when performing numerical analysis of soft clay ground.

Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part I: Model-I

  • Pham, Thanh Dam;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.980-992
    • /
    • 2019
  • This paper describes a model test and numerical simulation of a 750-kW-semi-submersible platform wind turbine under several wind and wave conditions for validation of the numerical simulation model. The semi-submersible platform was designed to support the 750-kW-wind turbine class and operate at a water depth of 50 m. The model tests were performed to estimate the performance characteristics of the wind turbine system in the wide tank of the University of Ulsan. Motions and loads of the wind turbine system under the wind and wave conditions were measured and analyzed. The NREL-FAST code was used to simulate the wind turbine system, and the results were compared with those of the test model. The results demonstrate that the numerical simulation captures noticeably the fully coupled floating wind turbine dynamic responses. Also, the model shows a good stability and small responses during waves, wind, and operation of the 750-kW-floating offshore wind turbine.

이미지 프로세싱을 이용한 얕은 터널 모형실험과 수치해석의 비교 (Comparison of Shallow Model Tunnel Test Using Image Processing and Numerical Analysis)

  • 이용주
    • 한국지반공학회논문집
    • /
    • 제22권7호
    • /
    • pp.5-12
    • /
    • 2006
  • 본 연구는 사질토 지반에서의 얕은 터널굴착으로 인한 지반변형 거동을 규명하기 위해 연속체 사질토 지반을 모사 하는 알루미늄 봉과 근거리 사진계측기법을 이용하여 2차원 실내모형실험을 실시하였다. 실험결과에 근거하는 수치해석으로부터 생성된 변위벡터의 방향과 크기는 모형실험 결과와 거의 일치하였다. 특히, 벡터의 방향은 터널의 인버트 아래 어느 한 점을 향하는 것으로 나타났다. 좁은 "굴뚝 또는 튜울립" 형태의 수직변위는 수치해석 및 모형실험 결과에서 확인할 수 있었다. 이러한 양상은 현장에서 측정한 결과와 잘 일치된다. 정성적인 비교와 더불어 지중에서의 2차원 지반손실에 따른 정량적인 침하량 비교 결과, 모형실험에서 측정된 지중침하량이 수치해석 결과 잘 일치됨을 보여주었다. 따라서 본 모형실험에 적용된 근거리 사진계측기법은 수치해석 결과를 검증하는데 유용하게 사용될 수 있다.

낙동강 취수보개체를 위한 이동상 수리모형실험 (The Movable Hydraulic Model Test for Exchange of Intake Weir in the Nakdong River)

  • 김성원
    • 한국환경과학회지
    • /
    • 제9권1호
    • /
    • pp.35-42
    • /
    • 2000
  • In this study, the movable bed model testing was carried out so as to analyze bed profile changes including predicting scouring and deposition of bed profile and to solve hydraulic problems affecting with bed and both-bank between upstream and downstream of intake weir in the Nakdong river channel. The movable bed model testing consists of fundamental test, movable model test and numerical analysis method respectively. The fundamental test was enforced to analyze relationship of discharge and sediment load in the tilting flume. When the movable model test was worked, it was shown that sediment budget between input sediment load and output sediment load was balanced exactly. As a result of movable model test, it was presented that scouring and deposition changes in quantities between the upstream and downstream of modification weir were less than those of nature and planning weir. Finally, numerical analysis method was operated by 1-dimensional bed profile changes model ; HEC-6 model so as to complement unsolving hard problems during movable model test. So, modification weir will sustained the stable bed profile changes than any other weirs in the study channel.

  • PDF

근접 병설터널 모형실험을 통한 붕괴인자 민감도 분석 (The Sensitivity Analysis on Failure Parameter of Adjacent Twin Tunnel Using Model Tests)

  • 한연진;심승보;최용규;김건호;장옥성;김홍택
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.585-594
    • /
    • 2009
  • In this present study, to performed the model test and estimated the behavior characteristics of twin tunnel in accordance with the variation of the whole failure parameters which is the strength of the ground, distance of tunnel, angle of the joint, installation of tension bolts and the blasting load. To carry out the numerical analysis for verification of model test results and analyze the sensitivity on failure parameters using model test and numerical analysis results. Based on sensitivity analysis results, to propose the most habitually failure parameters in tunnel scale model test.

  • PDF

Spud-can penetration depending on soil properties: Comparison between numerical simulation and physical model test

  • Han, Dong-Seop;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • 제7권2호
    • /
    • pp.107-120
    • /
    • 2017
  • Spud-can is used for fixing jack-up rig on seabed. It needs to be inserted up to the required depth during the installation process to secure enough soil reaction and prevent overturning accidents. On the other hand, it should be extracted from seabed soils as fast as possible during the extraction process to minimize the corresponding operational cost. To achieve such goals, spud-can may be equipped with water-jetting system including monitoring and control. To develop such a smart spud-can, a reliable numerical simulation tool is essential and it has also to be validated against physical model tests. In this regard, authors developed a numerical simulation tool by using a commercial program ANSYS with extended Drucker-Prager (EDP) formula. Authors also conducted small-scale (1/100) physical model tests for verification and calibration purpose. By using the numerical model, a systematic parametric study is conducted both for sand and K(kaolin)-clay with varying important soil parameters and the best estimated soil properties of the physical test are deduced. Then, by using the selected soil properties, the numerical and experimental results for a sand/K-clay multi-layer case are cross-checked to show reasonably good agreement. The validated numerical model will be useful in the next-stage study which includes controllable water-jetting.

2차원 실내모형실험과 수치해석을 이용한 사질토 지반의 얕은 터널에 대한 지중변형에 대한 규명 (Investigation of Subsurface Deformations for the Shallow Tunnel In A Granular Mass Using Two-Dimensional Laboratory Model Test and Numerical Analysis)

  • 이용주
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.219-228
    • /
    • 2006
  • In urban areas, tunnelling induced ground deformations, particularly ground settlements should be considered in order to minimize the damage of adjacent structures. Therefore, an appropriate monitoring system for the tunnel construction should be setup at the planning or design stage. A number of studies on ground settlements due to tunnelling in soft ground have been carried out so far. However, most studies have focused on clay soil rather than sand soil. In particular, a few studies on behaviour of subsurface deformations in granular material have been reported. In this study, two-dimensional laboratory model test with aluminium rods regarded as continuum granular material and close range photogrammetric technique, and numerical analysis were carried out in order to identify the behaviour of subsurface deformations due to shallow tunnelling. Direction and magnitude of displacement vectors from the model test was identical to the numerical analysis. In particular, the vector direction was appeared to be toward a point below the tunnel invert level. A narrow 'chimney or tulip like' pattern of vertical displacement was confirmed by both the model test and numerical analysis. This is consistent with the field data. In addition to the qualitative comparison, the quantitative comparison of subsurface settlements according to 2D volume loss showed good agreement between the model test and numerical analysis. Therefore, close range photogrammetric technique applied in the model test may be used to validate the result from the continuum numerical analysis.

  • PDF

관입식 통수능 실험의 수치해석 (Numerical Analyses about Test Results of Discharge Capacity Apparatus Using Penetration Method)

  • 유남재;우영민;전상현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.720-728
    • /
    • 2009
  • This thesis is results of numerical analyses about test results of discharge capacity apparatus using penetration method. Applicability of numerical approach with FEM technique, using Cam-clay model, was confirmed by analyzing the results of standard consolidation test before analyzing test results of discharge capacity apparatus using penetration method. Thus, input parameters for the model was convinced to be appropriate. For numerical analyses about test results of discharge capacity apparatus using penetration method, identical initial and loading conditions during tests were applied to simulate test results correctly. Effects of ground disturbance resulted from installment of vertical drains on the behaviors of consolidation were also simulated. Applicability of numerical approach was investigated by comparing test results with numerical ones. As results of them, both of consolidation settlement were found to be in good agreements so that its applicability was confirmed. As results of numerical estimation, degree of consolidation with the condition of considering smear zone was found to be delayed, compared with results without smear zone. On the other hands, parametric numerical analyses of changing parameters related to smear zone such as permeability and size of smear zone and permeability of vertical drain were also carried out.

  • PDF

Model test and numerical simulation of OC3 spar type floating offshore wind turbine

  • Ahn, Hyeon-Jeong;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.1-10
    • /
    • 2019
  • Nowadays, the study on Floating Offshore Wind Turbines (FOWTs) is being performed globally. Dozens of numerical simulation tools have been developed for designing FOWTs and simulating their performances in combined wave and wind environments. On the other hand, model tests are still required to verify the results obtained from numerical simulation tools. To predict seakeeping performance of the OC3-Hywind platform, a OC3 spar model moored by a 3-leg catenary spread mooring system with a delta connection was built with a 1/128 scale ratio. The model tests were carried out for various sea states, including rotating rotor effect with wind in the Ocean Engineering Wide Tank, University Of Ulsan (UOU). The model test results are compared with the numerical simulations by UOU in-house code and FAST.

전기자동차 에너지효율 평가를 위한 수치해석 연구 (Numerical Analysis Research for Evaluating the Energy Efficiency of Electric Vehicles)

  • 최민기
    • 한국분무공학회지
    • /
    • 제29권1호
    • /
    • pp.1-6
    • /
    • 2024
  • This paper is a numerical analysis study for evaluating the energy efficiency of electric vehicles. Currently, the methods for testing and evaluating the energy consumption efficiency of electric vehicles have limitations such as resources and time. Therefore, there is a need for research on developing models to predict the energy consumption efficiency of electric vehicles. In this study, a numerical analysis research is conducted to predict the energy efficiency of electric vehicles using a vehicle dynamics numerical analysis model. To validate the accuracy of the simulation model, it is compared the results of dynamometer tests with the simulation results and used the Unified Diagnostic Services (UDS) protocol to acquire internal data from the electric vehicle. It is ensured the reliability of the simulation model by comparing data such as motor speed, battery voltage, current, state of charge (SOC), regenerative braking power generation, and total driving distance of the test vehicle with dynamometer test data and simulation model results.