• Title/Summary/Keyword: Numerical method

Search Result 18,654, Processing Time 0.045 seconds

A Study on the Noise and Vibration Damping Performance of RC Hollow Core Slab (중공형 RC 슬래브의 소음 및 진동 감쇠성능에 대한 연구)

  • Kim, Dong Baek;Kim, In Bae;Kim, Jong Hoon;Lee, Jae Won
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.292-300
    • /
    • 2019
  • Purpose: To reduce the noise and vibration of reinforced concrete slab structures, the damping performance is to be performed experimentally after installing hollow core or filling it with liquid. Method: Using the hollow rate as an experimental variable, the damping ratio and stiffness of each test specimen at impact load are obtained to determine the difference between the damping ratio and stiffness of the numerical analysis. In addition, the damping effects are reviewed by comparing the difference in the damping ratio and stiffness of a test specimen filled with liquid 50% of the study. Results: Since the difference in resistance between a specimen with or without hollow core is 5%, it is judged that there is no structural problem, and the injection of liquid into the hollow core can increase the damping ratio, which can reduce noise or vibration. Conclusion: At less than 20% of hollow rate, there was little damping effect, and at 30%, damping effect was found. However, if liquid is injected into the hollow core of the specimen, damping rate is shown to increase, and the injection of liquid into the hollow part is believed to reduce noise or vibration.

Numerical Study on the Characteristics of Fluid Flow and Pressure Fluctuation around Human Knuckle in Hydrogymnastics (수중 운동 시 손관절 부위의 유동 및 압력변동 특성에 대한 해석적 연구)

  • Choi, Ji-Hyun;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.390-395
    • /
    • 2019
  • Hydrogymnastics so that sufficient exercise effect can be obtained using the resistance of water has a positive effect on patients who have to receive arthritis or rehabilitation treatment. However, the studies on the effect are insufficient, and the main cause of their effects has not been unclear yet. In this study, in order to identify the main cause of the effects of Hydrogymnastics, conducted Unsteady fluid flow simulation under the same conditions as the actual environment. The analysis model based on real hands, and the pressure fluctuation applied to the knuckle was analyzed by the computational fluid method. During the underwater movement of the hands, Various sizes of vortices were generated between fingers due to skin surface velocity and flow resistance. Pressure of about -500 Pa to +500 Pa is applied by the vortex flow. Also It was confirmed that the positive pressure and the negative pressure were continuously repeated up to maximum + 2000 Pa at the minimum of -2000 Pa at the portion where the direction was changed. Pressure fluctuations with a frequency of 20 Hz to 70 Hz were added continuously for each knuckle. These continuous pressure fluctuations provide a direct massage effect on the knuckles, an It is judged that the blood circulation at the relevant part is positively affected.

Study for Aerodynamic and Aeroacoustic Characteristics of Multirotor Configurations Considering the Wake Interaction Effect (멀티로터형 비행체의 후류 상호작용을 고려한 공력 및 공력소음 해석 연구)

  • Ko, Jeongwoo;Kim, Dong Wook;Lee, Soogab
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.469-478
    • /
    • 2019
  • Multirotor configurations such as VTOL and urban air mobility have been focused on today due to the high maneuverability. Aerodynamic and aeroacoustic characteristics of multirotor have much difference to those of a single rotor. In this study, a numerical analysis based on the free wake vortex lattice method is used for identifying the wake interaction effect. In order to compare the various configurations and operating conditions, the effects of the spacing between the rotors in hovering flight and the effects of the advancing ratio and the formation in forward flight are discussed. In the hovering flight, the unsteady loading of multirotor changes periodically and loading fluctuation increases as decreasing the spacing. It causes the variation in unsteady loading noise and the noise directivity pattern. In the forward flight, the difference in loading fluctuation and noise characteristics are observed according to the diamond and square formation of rotors. By comparing with results of single rotor analysis, multirotor configurations have different directivity pattern and amplitude of loading noise according to the location of each rotor. As a result, wake interaction effect becomes a highly important factor for aerodynamic and aeroacoustic analysis according to multirotor configurations and operating conditions.

An Analytical Model Proposal Considering Different Surface Type of Bond Behavior between GFRP Rebar and Concrete (GFRP 보강근의 외피형상을 고려한 부착 해석모델 제안)

  • Park, Ji-Sun;Song, Tae-Hyeob;Lee, Jung-Yoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 2019
  • The bond analysis model equation was proposed through the regression analysis of the experimental values of bond behavior for each rebar. In order to verify the appropriateness of the bond analysis model equation, the bond behaviors calculated by the proposed bond analysis model, BPE model and CMR model were compared with experimental values. The proposed bond model showed the closest behavior to the experimental values when compared to other analysis models. The former models can not consider the different properties of GFRP rebar according to composed materials, mixing and manufacturing method and the latter has limitation to express the relationships between bond behavior because of derived formula by numerical analysis. This study proposed the analytical model different considering bond mechanism according to surface type. In order to verity the appropriateness of the bond analytical model, the bond behaviors calculated by the proposed bond analytical model, BPE model and CMR model were compared with experimental values. The proposed bond model showed the closest behavior to the experimental values when compared to other analysis models.

Detection of Low-RCS Targets in Sea-Clutter using Multi-Function Radar (다기능 레이다를 이용한 저 RCS 해상표적 탐지성능 분석)

  • Lee, Myung-Jun;Kim, Ji-eun;Lee, Sang-Min;Jeon, Hyeon-Mu;Yang, Woo-Yong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.6
    • /
    • pp.507-517
    • /
    • 2019
  • Multi-function radar(MFR) is a system that uses various functions such as detection, tracking, and classification. To operate the functions in real-time, the detection stage in MFR usually uses radar signals for short measurement time. We can utilize several conventional detectors in the MFR system to detect low radar cross section maritime targets in the sea-clutter; however, the detectors, which have been developed to be effective for radar signals measured for a longer time, may be inappropriate for MFR. In this study, we proposed a modelling technique of sea-clutter short measurement time. We combined the modeled sea-clutter signal with the maritime-target signal, which was obtained by the numerical analysis method. Using this combined model, we exploited four independent detectors and analyzed the detection performances.

Concrete-Panel Retaining Wall anti-crack sleeve inserted (균열방지 슬리브가 매설된 패널식 옹벽)

  • Jang, Sung-Ho;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.345-349
    • /
    • 2019
  • In Korea, the mountainous area occupies more than 70% of the whole country, cutting of earth slope that cuts a part of the ground surface is widely used when building infrastructures such as road, railroad, and industrial complex construction. In recent years, regulations on environmental damage have become more strict, and various methods have been developed and applied. Among them, Concrete-Panel Retaining Wall technique is actively applied. Concrete-Panel Retaining Wall is a method to resist horizontal earth pressure by forming a wall by attaching a precast retaining wall to the front of the support material and increasing the shear strength of the disk through reinforcement of the support material. Soil nailing, earth bolt, and ground anchor are used as support material. Among them, ground anchor is a more aggressive reinforcement type that introduces tensile load in advance to the steel wire, and a large concentrated load acts on the front panel. This concentrated load is a factor that creates cracks in the concrete panel and reduces the durability of the retaining wall itself. In this study, steel pipe sleeves and reinforcements were purchased at the anchorage of the panel to prevent cracks, and by applying bumpy shear keys to the end of the panel, the weakness of the individual behavior of the existing grout anchors was improved. The problem of degraded landscape by exposure to front concrete of retaining wall and protrusion of anchorage was solved by the production of natural stone patterns and the construction of sections that do not protrude the anchorage. In order to verify the effectiveness of anti-crack sleeves and reinforcements used in the null, indoor testing and three-dimensional numerical analysis have been performed, and the use of steel pipe sleeves and reinforcements has demonstrated the overall strength increase and crack suppression effect of panels.

DEM numerical study for the effect of scraper direction on shield TBM excavation in soil (개별요소법을 이용한 스크래퍼 비트방향이 토사지반에서의 쉴드 TBM 굴진에 끼치는 영향 연구)

  • Lee, Gi-Jun;Kim, Huntae;Kwon, Tae-Hyuk;Cho, Gye-Chun;Kang, Shin-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.689-698
    • /
    • 2019
  • In tunnel excavation by TBMs, a cutterhead, which practically excavates the ground, is an important part directly affecting net penetration rate. Most of the researches on the cutterhead design that have been carried out until now are on the cutter arrangement. It is difficult to find a study for the effect of the scraper installation direction on TBM excavation although same cutterheads except for direction of the scraper are used in Korea. Therefore, this paper shows how the direction of scraper installation affects shield-TBM excavation. Discrete element method was used to identify the effect of scraper installation direction on shield-TBM excavation. When the scraper installation direction was outward, the amount of particles per unit time flowed into the cutter head opening was smaller than when the scraper installation direction was inward, and more loads were applied to the cutterhead.

Prediction of Topographic Change in the Estuary of Nakdong River and Analysis of Its Contribution by External Force Condition (낙동강 하구 지형변화 예측 및 외력조건에 따른 기여도 분석)

  • Kim, Kang-Min;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.64-71
    • /
    • 2019
  • It is very important to understand the mechanism of estuary topographic changes for the study of estuary management and treatment methods. In this study, the effects from the land-side, such as rainfall, river discharge, sediment discharge, and sea side, such as tide, tidal current, wave and surface sediments related to the topographic changes of the Nakdong river estuary were investigated and analyzed. Based on the analyzed data, topographic modeling was performed to analyze the topographic change and contribution of external force conditions. As a result of numerical modeling, the topographic change showed that erosion that predominates in the water directly affected by the discharge of the estuary barrage. The deposition predominates in the indirectly affected tideland. As sediments moved along the water way being sorted and distributed by the wave, the deposition predominated in the front of the barrier island. Compared with the deposition dominance, which is the result of the topographic change prediction, the impact of each external force condition gives larger erosion. However, the combined impact of each external force condition showed deposition dominant. Therefore, the topographic changes of the Nakdong river estuary are considered to be the result of various complex external factors. The impacts of each external force condition show the different contribution to each comparison area. These results should be considered when establishing the estuary management method. It must be understood that this is the result of complex interactions.

Molecular Dynamics Simulation on the Thermal Boundary Resistance of a Thin-film and Experimental Validation (분자동역학을 이용한 박막의 열경계저항 예측 및 실험적 검증)

  • Suk, Myung Eun;Kim, Yun Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.103-108
    • /
    • 2019
  • Non-equilibrium molecular dynamics simulation on the thermal boundary resistance(TBR) of an aluminum(Al)/silicon(Si) interface was performed in the present study. The constant heat flux across the Si/Al interface was simulated by adding the kinetic energy in hot Si region and removing the same amount of the energy from the cold Al region. The TBR estimated from the sharp temperature drop at the interface was independent of heat flux and equal to $5.13{\pm}0.17K{\cdot}m^2/GW$ at 300K. The simulation result was experimentally confirmed by the time-domain thermoreflectance technique. A 90nm thick Al film was deposited on a Si(100) wafer using an e-beam evaporator and the TBR on the film/substrate interface was measured using the time-domain thermoreflectance technique based on a femtosecond laser system. A numerical solution of the transient heat conduction equation was obtained using the finite difference method to estimate the TBR value. Experimental results were compared to the prediction and discussions on the nanoscale thermal transport phenomena were made.

A Study on the Effects of Droplets Characteristics of Water Mist on the Spray Density on the Floor (미분무 액적특성이 살수밀도에 미치는 영향 연구)

  • Kim, Jong-Hoon;Park, Won-Hee;Kim, Woon-Hyung;Myoung, Sang-Yup
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.120-127
    • /
    • 2021
  • Purpose: In this study, the effect of changes in the variables related to water droplets on the spray density on the floor in the analysis of the water mist fire protection system using FDS was analyzed. Method: When the spray of the water mist nozzle was analyzed in FDS, Particles Per Seconds, Particle Velocity, Size Distribution, and Spray Pattern Shape that can be set in relation to droplets were input to review the analyzed results. Result: In the analysis results, when the number of particles per second was set above a certain value, the spray density of the floor was similar. In the case of Particle Velocity, as the velocity decreases, the spray density of the central portion increases but decreases at a distance of 0.15m or more. From the analysis of the change in the size distribution function, it was found that an increase in the 𝛾 value increases the spray density of the central part, but the value at a remote location decreases. Compared to the result of applying the Gaussian distribution, the median value decreases dramatically when the uniform distribution is applied, but the value at the adjacent position increases. Conclusion: Variables related to the droplet properties of the FDS affect the spray density of the floor. Therefore, in order to increase the reliability of results before performing analyses such as fire suppression or cooling, a sufficient review of input variables is required.