• Title/Summary/Keyword: Numerical method

Search Result 18,654, Processing Time 0.039 seconds

Numerical Iteration for Stationary Probabilities of Markov Chains

  • Na, Seongryong
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.6
    • /
    • pp.513-520
    • /
    • 2014
  • We study numerical methods to obtain the stationary probabilities of continuous-time Markov chains whose embedded chains are periodic. The power method is applied to the balance equations of the periodic embedded Markov chains. The power method can have the convergence speed of exponential rate that is ambiguous in its application to original continuous-time Markov chains since the embedded chains are discrete-time processes. An illustrative example is presented to investigate the numerical iteration of this paper. A numerical study shows that a rapid and stable solution for stationary probabilities can be achieved regardless of periodicity and initial conditions.

Experimental and Numerical Analyses of Unsteady Tunnel Flow in Subway Equiped with Platform Screen Door System (스크린도어가 설치된 지하철에서 열차운행에 의한 비정상유동의 실험 및 수치적 해석)

  • Kim Jung-Yup;Kim Kwang-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.103-111
    • /
    • 2006
  • To optimize the ventilation and smoke control systems in subway equipped with platform screen door, the technology to analyze the unsteady tunnel flow caused by running of train should be developed. The development of model experiment and numerical analysis technique with relation to unsteady flow of subway were presented. The pressure and air velocity changes in 1/20-scaling experiment unit were measured and results were comparied to those of 3-D unsteady numerical analysis applied with sharp interface method. The experimental and numerical results were quantitatively similar and it would be reasonable to apply sharp interface method to analyze the unsteady flow in subway equipped with platform screen door.

An Evaluation of a Direct Numerical Simulation for Counterflow Diffusion Flames (대향류 확산화염에 대한 직접수치모사의 검증)

  • 박외철
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.74-81
    • /
    • 2001
  • A direct numerical simulation (DNS) was applied to nonpremixed counter-flow diffusion flames between oxidizer and fuel ducts. The objective of this study is to evaluate the numerical method for simulation of axisymmetric counterflow diffusion flames. Effects of computational domain size and grid size were scrutinized, and then the method was applied to air-methane diffusion flames. The results at zero gravity conditions were in good agreement with those obtained by the one-dimension flame code OPPDIF. It was confirmed thai the numerical method is applicable to the diffusion flames at the normal gravity conditions since the results clearly showed the effects of buoyancy and velocity ratio.

  • PDF

Spatial and temporal distribution of driving rain on a low-rise building

  • Blocken, Bert;Carmeliet, Jan
    • Wind and Structures
    • /
    • v.5 no.5
    • /
    • pp.441-462
    • /
    • 2002
  • This paper presents a practical numerical method to determine both the spatial and temporal distribution of driving rain on buildings. It is based on an existing numerical simulation technique and uses the building geometry and climatic data at the building site as input. The method is applied to determine the 3D spatial and temporal distribution of wind-driven rain on the facade a low-rise building of complex geometry. Distinct wetting patterns are found. The important causes giving rise to these particular patterns are identified : (1) sweeping of raindrops towards vertical building edges, (2) sweeping of raindrops towards top edges, (3) shelter effect by various roof overhang configurations. The comparison of the numerical results with full-scale measurements in both space and time for a number of on site recorded rain events shows the numerical method to yield accurate results.

Numerical solution of singular integral equation for multiple curved branch-cracks

  • Chen, Y.Z.;Lin, X.Y.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.85-95
    • /
    • 2010
  • In this paper, numerical solution of the singular integral equation for the multiple curved branch-cracks is investigated. If some quadrature rule is used, one difficult point in the problem is to balance the number of unknowns and equations in the solution. This difficult point was overcome by taking the following steps: (a) to place a point dislocation at the intersecting point of branches, (b) to use the curve length method to covert the integral on the curve to an integral on the real axis, (c) to use the semi-open quadrature rule in the integration. After taking these steps, the number of the unknowns is equal to the number of the resulting algebraic equations. This is a particular advantage of the suggested method. In addition, accurate results for the stress intensity factors (SIFs) at crack tips have been found in a numerical example. Finally, several numerical examples are given to illustrate the efficiency of the method presented.

DEVELOPMENT OF EULERIAN-GRANULAR MODEL FOR NUMERICAL SIMULATION MODEL OF PARTICULATE FLOW (Eulerian-Granular method를 사용한 고체 입자 유동 모델 개발)

  • Lee, T.G.;Shin, S.W.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.46-51
    • /
    • 2015
  • In this paper, we have developed numerical model for particulated flow through narrow slit using Eulerian-Granular method. Commercial software (FLUENT) was utilized as simulation tool and main focus was to identify the effect from various numerical options for modeling of solid particles as continuos phase in granular flow. Gidaspow model was chosen as basic model for solid viscosity and drag model. And lun-et-al model was used as solid pressure and radial distribution model, respectively. Several other model options in FLUENT were tested considering the cross related effect. Mass flow rate of the particulate through the slit was measured to compare. Due to the high volume density of the stacked particulates above the slit, effect from various numerical options were not significant. The numerical results from basic model were also compared with experimental results and showed very good agreement. The effects from the characteristics of particles such as diameter, angle of internal friction, and collision coefficient were also analyzed for future design of velocity resistance layer in solar thermal absorber. Angle of internal friction was found to be the dominat variable for the particle mass flow rate considerably. More defined 3D model along with energy equation for complete solar thermal absorber design is currently underway.

A Study of Numerical Wave Tank for 3-Dimensional Free Surface Wave Simulation (3차원 자유표면파 모사를 위한 수치 파수조에 관한 연구)

  • Ha, Y.R.;Kim, Y.J.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.27-34
    • /
    • 2011
  • The increasing capabilities of the computers enable us to utilize various numerical schemes for the time-domain simulations concerned with 3-dimensional free-surface wave problems. There are still difficulties to solve such kind of problems, however. That's because long time simulations with large computational domain are needed in time-domain analysis. So, we need faster and more efficient numerical schemes to get the solutions practically for these problems. In this paper, a high-order spectral/boundary-element method is used for the numerical investigation of physics involved in wave-body interaction. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time-domain. To get the robust study in these topics, various numerical tests are performed and compared with others' works.

Health risk assessment by CRPS and the numerical model for toluene in residential buildings

  • Choi, Haneul;Kim, Hyungkeun;Kim, Taeyeon
    • KIEAE Journal
    • /
    • v.17 no.5
    • /
    • pp.33-41
    • /
    • 2017
  • Purpose: Indoor air quality in residential buildings needs to be evaluated over the long term. In previous research, there has been an attempt to perform the health risk assessment of pollutants by using numerical models as a method of long-term evaluation. However, the numerical model of this precedent study has limitations that do not reflect the actual concentration distribution. Therefore, this study introduces the CRPS index, constructs a numerical model that can reflect the concentration distribution, and then presents a more accurate health risk assessment method using it. At this time, the pollutants are toluene, which is a typical material released from building materials. Method: CRPS index was applied to existing numerical model to reflect concentration distribution. This was used to calculate concentrations at adult breathing area and to use them for exposure assessment in a health risk assessment. After that, we entered adult data and conducted a health risk assessment of toluene. Results: The non-carcinogenic risk of toluene was calculated to be 0.0060. This is 5% smaller than the existing numerical model, meaning that it is more accurate to predict the pollutant risks. This value is also lower than the US EPA reference value of 1. Therefore, under the conditions of this study, long-term exposure of adults to toluene has no impact on health.

An Analysis of Fluid Flow Using the Streamline Upwinding Finite Element Method (유선상류 유한요소법을 이용한 유동장의 해석)

  • 최형권;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.624-634
    • /
    • 1994
  • A numerical method which combines equal-order velocity-pressure formulation originated from SIMPLE algorithm and streamline upwinding method has been developed. To verify the proposed numerical method, we considered the lid-driven cavity flow and backward facing step flow. The trend of convergence history is stable up to the error criterion beyond which the maximum value of error is oscillatory due4 to the round-off error. In the present study, all results were obtained with the single precision calculation up to the given error criterion and it was found to be sufficient for our purpose. The present results were then compared with existing experimental results using laser doppler velocimetry and numerical results using finite difference method and mixed interpolation finite element method. It has been shown that the present method gives accurate results with less memories and execution time than the coventional finite element method.

Optimization of Extremely Low Numerical-Dispersion FDTD Method Based on H(2,4) Scheme for Wideband Analysis of Lossy Dielectric (H(2,4) 기법을 기반으로 한 저분산 FDTD 기법의 손실 매질의 광대역 해석을 위한 최적화 방법)

  • Oh, Ilyoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.225-232
    • /
    • 2018
  • This paper proposed the optimization method of the extremely low numerical-dispersion finite-difference time-domain (ELND-FDTD) method based on the H(2,4) scheme for wideband and extremely accurate electromagnetic properties of lossy material, which has a constant conductivity and relative permittivity. The optimized values of three variables are calculated for the minimum numerical dispersion errors of the proposed FDTD method. The excellent accuracy of the proposed method is verified by comparing the calculated results of three different FDTD methods and the analytical results of the two-dimensional dielectric cylinder scattering problem.