• Title/Summary/Keyword: Numerical measurements

Search Result 1,095, Processing Time 0.029 seconds

Prediction of Isothermal and Reacting Flows in Widely-Spaced Coaxial Jet, Diffusion-Flame Combustor (큰 지름비를 가지는 동축제트 확산화염 연소기내의 등온 및 연소 유동장의 예측)

  • O, Gun-Seop;An, Guk-Yeong;Kim, Yong-Mo;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2386-2396
    • /
    • 1996
  • A numerical simulation has been performed for isothermal and reacting flows in an exisymmetric, bluff-body research combustor. The present formulation is based on the density-weighted averaged Navier-Stokes equations together with a k-epsilon. turbulence model and a modified eddy-breakup combustion model. The PISO algorithm is employed for solution of thel Navier-Stokes system. Comparison between measurements and predictions are made for a centerline axial velocities, location of stagnation points, strength of recirculation zone, and temperature profile. Even though the numerical simulation gives acceptable agreement with experimental data in many respects, the present model is defictient in predicting the recoveryt rate of a central near-wake region, the non-isotropic turbulence effects, and variation of turbulent Schmidt number. Several possible explanations for these discrepancies have been discussed.

The Estimation of Marine Environmental Capacity for the Reception of Cooling Water from HTPP in Southern Waters of Cheju Island using a 3-D Hydrodynamic Model (화순화력발전소 주변해역의 온배수 환경용량 산정)

  • Kim Gwang-Su;Choi Young-Chan;Lee Moon-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.3
    • /
    • pp.3-12
    • /
    • 2000
  • The field surveys and the measurements of seawater temperatures were conducted every month from 1997 to 1999, and the distributions of seawater temperature were simulated and reproduced by a three dimensional hydrodynamic numerical model over the southern waters of Cheju island. In order to estimate the marine environmental capacity for the reception of the heat loads of cooling water discharged from Hwasoon Thermal Power Plant(HTPP) in the study area, the simulations for predicting the situation of unfavorable environment in which marine organisms might not be satisfied with change in seawater temperature were peformed using a three dimensional hydrodynamic numerical model by controlling quantitatively the heat loads of cooling water from HTPP Currently, HTPP discharges cooling water of 35.9℃ into the sea as much as 112,800m³/day in summer. As the results of simulations, the more the heat loads from the power plant increase, the more increase the seawater temperatures around the water areas adjacent to the power plant. In case the heat loads of cooling water from HTPP become about 5 times as high as the present loads, seawater temperatures at near-shore waters adjacent to HTPP appear to be increased to the extent of 0.5℃ above the existing seawater temperature in summer. The marine environmental capacity for the reception of thermal discharge from HTPP is estimated to be about 530×10/sup 6/kcal/day which is equivalent to the increase of a factor of 2 in the temperature of cooling water without any change in the discharge rate of cooling water or which is equivalent to the increase of a factor of 4.6 in the discharge rate of cooling water without any change in the temperature of cooling water. Comparing the case of the increase in the discharge rate of cooling water with the case of the increase in the temperature of cooling water on the basis of the same heat loads of 530×10/sup 6/kal/day, the former case is expected to increase seawater temperature a little higher and to extend the area affected by heat loads a little broader.

  • PDF

Ultrasonographic and radiographic evaluation for the quantitative diagnosis of diffuse hepatic disease in dogs (개에서 미만성 간장병변의 정량적 진단을 위한 초음파 및 방사선학적 평가)

  • Sung, Jai-ki;Lee, Hee-chon;Yoon, Jung-hee;Lee, Young-won;An, Yong-joo;Choi, Ho-jung;Choi, Ji-hye
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.4
    • /
    • pp.918-928
    • /
    • 1998
  • The present study was done with two aims. First, to evaluate the radiographic measurements of liver volumes in normal and hepatomegaly dogs induced by carbon tetrachloride. Second, to investigate quantitative tissue echo pattern by ultrasonography. Gray level histogram of the normal liver and the kidney were estimated with carbon tetra-chloride intoxication. In normal, r-square for liver volume to body weight was 0.93372, and this showed direct linear regression. Gray level histograms of the normal liver and the kidney were $19.150{\pm}2.490$(mean${\pm}$SD) and $13.175{\pm}2.686$(mean${\pm}$SD) respectively(p < 0.01). Liver parenchymal echogenicity was more hyperechogenic than kidney cortex echogenicity. Liver/Kidney ratio was $1.504{\pm}0.313$ and it can be used relative comparison of liver and kidney parenchymal echogenicity. In carbon-tetrachloride($CCl_4$) intoxication, changes of liver volume appeared to increase up to 24 hours after administration (p < 0.05), and decreased gradually to normal level after 2~5 days. Gray level histogram of liver parenchyma decreased up to 24hours (p < 0.01) after intoxication and then gradually increased to normal level. But that of kidney cortex had no significant change. Liver/Kidney ratio also decreased by 2 days(p < 0.01) and then gradually increased to normal level. On histopathologic features of hepatic tissues in carbon tetrachloride intoxication, both coagulative necrosis of hepatic cell and hemorrhage of centrilobular & midzonal area were identified. Conclusively, plain radiography is a useful diagnostic method for evaluating liver volume in mild hepatomegaly. Especially, it is considered that an adequate numerical processing of the liver length, depth and thoracic width and depth measurement would be helpful. Using gray level histogram, ultrasonographic evaluation was useful objective methods in early diagnosis of diffuse hepatic disease.

  • PDF

Study on Combined Use of Inclination and Acceleration for Displacement Estimation of a Wind Turbine Structure (경사 및 가속도 계측자료 융합을 통한 풍력 터빈의 변위 추정)

  • Park, Jong-Woong;Sim, Sung-Han;Jung, Byung-Jin;Yi, Jin-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Wind power systems have gained much attention due to the relatively high reliability, good infrastructures and cost competitiveness to the fossil fuels. Advances have been made to increase the power efficiency of wind turbines while less attention has been focused on structural integrity assessment of structural sub-systems such as towers and foundations. Among many parameters for integrity assessment, the most perceptive parameter may be the induced horizontal displacement at the hub height although it is very difficult to measure particularly in large-scale and high-rise wind turbine structures. This study proposes an indirect displacement estimation scheme based on the combined use of inclinometers and accelerometers for more convenient and cost-effective measurements. To this end, (1) the formulation for data fusion of inclination and acceleration responses was presented and (2) the proposed method was numerically validated on an NREL 5 MW wind turbine model. The numerical analysis was carried out to investigate the performance of the propose method according to the number of sensors, the resolution and the available sampling rate of the inclinometers to be used.

An Application of the Multi-slope MUSCL to the Shallow Water Equations (천수방정식에 대한 다중 경사 MUSCL의 적용)

  • Hwang, Seung-Yong;Lee, Sam-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.819-830
    • /
    • 2011
  • The multi-slope MUSCL, proposed by T. Buffard and S. Clain, determines slopes of conserved variables at each edge of a cell in the linear reconstructions of data. In this study, the second order accurate numerical model was developed according to the multi-slope MUSCL to solve the shallow water equations on the unstructured grids. The HLLL scheme of approximate Riemann solvers was used to calculate fluxes. For the review of the applicability of the developed model, the results of the model were compared to the 'isolated building test' and the 'model city flooding experiment' conducted as part of the IMPACT (Investigation of extreMe flood Processes And unCerTainty) project in Europe. There were limitations to predict abrupt rising of water depths by the resistance of model buildings and water depths at the specific locations among the buildings. But they were identified as the same problems also revealed in results of the other models to the same experiment. On the more refined meshes to the 'model city flooding experiment' simulated results showed good agreement with measurements. It was verified that the developed model simulated well the complex phenomena such as a dam-break problem and the urban inundation by flash floods.

Effects of Particle Size of Barley on Intestinal Morphology, Growth Performance and Nutrient Digestibility in Pigs

  • Morel, P.C.H.;Cottam, Y.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1738-1745
    • /
    • 2007
  • A growth trial and a digestibility trial were conducted to examine the effect of feed particle size on the performance, nutrient digestibility, gastric ulceration and intestinal morphology in pigs fed barley-based diets. Barley was processed through a hammer mill to achieve four diets varying in particle size (average particle $size{\pm}standard $deviation): coarse ($1,100{\pm}2.19\;{\mu}m$), medium ($785{\pm}2.23\;{\mu}m$), fine ($434{\pm}1.70\;{\mu}m$) and mixed (1/3 of coarse, medium and fine) ($789{\pm}2.45\;{\mu}m$). Sixty-four entire male pigs were used in the growth trial and the diets were fed ad libitum between 31 kg and 87 kg live weight. Following slaughter, stomach and ileal tissues were scored for integrity (ulceration or damage) and histological measurements taken. Twenty-four entire male pigs were used in the digestibility trial, which involved total faecal collection. Over the entire growth phase, there were no differences (p>0.05) in average daily gain and feed conversion ratio between pigs fed diets of different particle size. Pigs fed the coarse and medium diets had lower (p<0.05) stomach ulceration scores (0.20 and 0.25, respectively, on a scale from 0 to 3) than those fed the mixed (0.69) or the fine diets (1.87). The stomachs of all animals fed the fine diet had lesions and stomach ulcerations were present only in this group. Pigs fed the fine diet had thicker (p<0.001) ileal epithelial cell layer with no differences (p>0.05) being observed for villous height or crypt depth. Faecal digestibility coefficients of neutral and acid detergent fibre were the highest (p<0.05) for the mixed diet, intermediate for the fine and coarse diets and the lowest for the medium diet. A similar numerical trend (p = 0.103) was observed for the apparent faecal energy digestibility coefficient. It is concluded that, with barley based diets, a variation in average particle size between $400{\mu}m$ and $1,100{\mu}m$ had no effect on pig performance but the fine dietary particle size affected the integrity of the stomach, as well as the structure of the small intestine, thus compromising overall gut health. Our data also demonstrate that changes in particle size distribution during the digestion process, rather than average particle size or particle size variation, are related to apparent faecal digestibility.

Evaluation of Soil Parameters Using Adaptive Management Technique (적응형 관리 기법을 이용한 지반 물성 값의 평가)

  • Koo, Bonwhee;Kim, Taesik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.47-51
    • /
    • 2017
  • In this study, the optimization algorithm by inverse analysis that is the core of the adaptive management technique was adopted to update the soil engineering properties based on the ground response during the construction. Adaptive management technique is the framework wherein construction and design procedures are adjusted based on observations and measurements made as construction proceeds. To evaluate the performance of the adaptive management technique, the numerical simulation for the triaxial tests and the synthetic deep excavation were conducted with the Hardening Soil model. To effectively conduct the analysis, the effective parameters among the parameters employed in the model were selected based on the composite scaled sensitivity analysis. The results from the undrained triaxial tests performed with soft Chicago clays were used for the parameter calibration. The simulation for the synthetic deep excavation were conducted assuming that the soil engineering parameters obtained from the triaxial simulation represent the actual field condition. These values were used as the reference values. The observation for the synthetic deep excavation simulations was the horizontal displacement of the support wall that has the highest composite scaled sensitivity among the other possible observations. It was found that the horizontal displacement of the support wall with the various initial soil properties were converged to the reference displacement by using the adaptive management technique.

Experimental and numerical disbond localization analyses of a notched plate repaired with a CFRP patch

  • Abderahmane, Sahli;Mokhtar, Bouziane M.;Smail, Benbarek;Wayne, Steven F.;Zhang, Liang;Belabbes, Bachir Bouiadjra;Boualem, Serier
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.361-370
    • /
    • 2017
  • Through the use of finite element analysis and acoustic emission techniques we have evaluated the interfacial failure of a carbon fiber reinforced polymer (CFRP) repair patch on a notched aluminum substrate. The repair of cracks is a very common and widely used practice in the aeronautics field to extend the life of cracked sheet metal panels. The process consists of adhesively bonding a patch that encompasses the notched site to provide additional strength, thereby increasing life and avoiding costly replacements. The mechanical strength of the bonded joint relies mainly on the bonding of the adhesive to the plate and patch stiffness. Stress concentrations at crack tips promote disbonding of the composite patch from the substrate, consequently reducing the bonded area, which makes this a critical aspect of repair effectiveness. In this paper we examine patch disbonding by calculating the influence of notch tip stress on disbond area and verify computational results with acoustic emission (AE) measurements obtained from specimens subjected to uniaxial tension. The FE results showed that disbonding first occurs between the patch and the substrate close to free edge of the patch followed by failure around the tip of the notch, both highest stress regions. Experimental results revealed that cement adhesion at the aluminum interface was the limiting factor in patch performance. The patch did not appear to strengthen the aluminum substrate when measured by stress-strain due to early stage disbonding. Analysis of the AE signals provided insight to the disbond locations and progression at the metal-adhesive interface. Crack growth from the notch in the aluminum was not observed until the stress reached a critical level, an instant before final fracture, which was unaffected by the patch due to early stage disbonding. The FE model was further utilized to study the effects of patch fiber orientation and increased adhesive strength. The model revealed that the effectiveness of patch repairs is strongly dependent upon the combined interactions of adhesive bond strength and fiber orientation.

Analysis of Photoluminescence of Eu3+ in YOBr and Investigation of Critical Distance (YOBr:Eu3+ 형광체의 발광특성과 임계거리 연구)

  • Kim, Gyeong Hwa;Park, Jong Gyu;Park, Hui Dong;Han, Jeong Hwa
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.6
    • /
    • pp.570-576
    • /
    • 2001
  • The europium doped yttrium oxybromide phosphors were synthesized by solid-state reaction method. The YOBr: $Eu^{3+}$ phosphor showed a strong and narrow red emission band at 621 nm and maximum emission intensity obtained when 0.05 mol Eu ions were doped. The red emission of $Eu^{3+}$ originated from $^5D_0$ ${\rightarrow}$ $^7F_2$electric dipole transition. In order to investigate on photoluminescence behavior, several experimental skills and numerical fittings are conducted to the YOBr: $Eu^{3+}$ phosphor. The emission spectrum was measured in the UV range and then decay curve of $^5D_0$ ${\rightarrow}$ $^7F_j$transitions was examined. The energy interaction type of YOBr: $Eu^{3+}$ phosphor was dipole-dipole interaction. In addition to the calculating by critical concentration, the critical distance ($R_0$) was calculated by decay curve fitting parameter from Inokuti-Hirayamas equation, and spectral overlap method. The critical distance was 17.03, 10.51 and 7.18$\AA$ for those methods, respectively. As considering systematic error of measurements, these values are within the same order, so that the above fitting methods are plausible and recommendable.

  • PDF

Study on Thermal Performance of Energy Textile in Tunnel (터널 지열 활용을 위한 에너지 텍스타일의 열교환 성능 연구)

  • Lee, Chulho;Park, Sangwoo;Sohn, Byonghu;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1907-1914
    • /
    • 2013
  • Textile-type heat exchangers installed on the tunnel walls for facilitating ground source heat pump systems, so called "energy textile", was installed in an abandoned railroad tunnel around Seocheon, South Korea. To evaluate thermal performance of the energy textile, a series of long-term monitoring was performed by artificially applying daily intermittent cooling and heating loads on the energy textile. In the course of the experimental measurement, the inlet and outlet fluid temperatures of the energy textile, pumping rate, temperature distribution in the ground, and air temperature inside the tunnel were continuously measured. From the long-term monitoring, the heat exchange rate was recorded as in the range of 57.6~143.5 W per one unit of the energy textile during heating operation and 362.3~558.4 W per one unit during cooling operation. In addition, the heat exchange rate of energy textile was highly sensitive to a change in air temperature inside the tunnel. The field measurements were verified by a 3D computational fluid dynamics analysis (FLUENT) with the consideration of air temperature variation inside the tunnel. The verified numerical model was used to evaluate parametrically the effect of drainage layer in the energy textile.