• Title/Summary/Keyword: Numerical inversion

Search Result 294, Processing Time 0.024 seconds

An efficient method for computation of receptances of structural systems with sparse, non-proportional damping matrix (성긴 일반 감쇠행렬을 포함하는 구조물에 대한 효율적인 주파수 응답 계산 방법)

  • Park, Jong-Heuck;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.99-106
    • /
    • 1995
  • Frequency response functions are of great use in dynamic analysis of structural systems. The present paper proposes an efficient method for computation of the frequency rewponse functions of linear structural dynamic models with a sparse, non-proportional damping matrix. An exact condensation procedure is proposed which enables the present method to condense the matrices without resulting in any errors. Also, an iterative scheme is proposed to be able to avoid matrix inversion in computing frequency response matrix. The proposed method is illustrated through a numerical example.

  • PDF

Interactions in a transversely isotropic new modified couple stress thermoelastic thick circular plate with two temperature theory

  • Parveen Lata;Harpreet Kaur
    • Coupled systems mechanics
    • /
    • v.12 no.3
    • /
    • pp.261-276
    • /
    • 2023
  • This article is an application of new modified couple stress thermoelasticity without energy dissipation in association with two-temperature theory. The upper and lower surfaces of the plate are subjected to an axisymmetric heat supply. The solution is found by using Laplace and Hankel transform techniques. The analytical expressions of displacement components, conductive temperature, stress components and couple stress are computed in transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerically simulated results are depicted graphically. The effect of two temperature is shown on the various components.

Thermo-mechanical response of size-dependent piezoelectric materials in thermo-viscoelasticity theory

  • Ezzat, Magdy A.;Al-Muhiameed, Zeid I.A.
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.535-546
    • /
    • 2022
  • The memory response of nonlocal systematical formulation size-dependent coupling of viscoelastic deformation and thermal fields for piezoelectric materials with dual-phase lag heat conduction law is constructed. The method of the matrix exponential, which constitutes the basis of the state-space approach of modern control theory, is applied to the non-dimensional equations. The resulting formulation together with the Laplace transform technique is applied to solve a problem of a semi-infinite piezoelectric rod subjected to a continuous heat flux with constant time rates. The inversion of the Laplace transforms is carried out using a numerical approach. Some comparisons of the impacts of nonlocal parameters and time-delay constants for various forms of kernel functions on thermal spreads and thermo-viscoelastic response are illustrated graphically.

Thermomechanical interactions in a transversely isotropic thermoelastic media with diffusion due to inclined load

  • Parveen Lata;Heena
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.263-272
    • /
    • 2024
  • This research deals with the study of two-dimensional deformation in transversely isotropic thermoelastic diffusion medium. This investigation integrates the effect of diffusion and thermal effects in transversely isotropic thermoelastic solids under inclined load. Inclined load is taken as linear combination of normal load and tangential load. Laplace and Fourier transformation techniques are employed to transform the physical domain and then transformed solutions are inverted with the aid of numerical inversion techniques. Concentrated and distributed load are considered to exemplify its utility. Graphical representation of variation in displacement, stresses, temperature and concentration distribution with distance is depicted by taking inclination at different angles. Some particular cases are studied.

Multi-station joint inversion of receiver function and surface-wave phase velocity data for exploration of deep sedimentary layers (심부 퇴적층 탐사를 위한 수신함수와 표면파 위상속도를 이용한 다측점 자료의 복합 역산)

  • Kurose, Takeshi;Yamanaka, Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • In this study, we propose a joint inversion method, using genetic algorithms, to estimate an S-wave velocity structure for deep sedimentary layers from receiver functions and surface-wave phase velocity observed at several sites. The method takes layer continuity over a target area into consideration by assuming that each layer has uniform physical properties, especially an S-wave velocity, at all the sites in a target area in order to invert datasets acquired at different sites simultaneously. Numerical experiments with synthetic data indicate that the proposed method is effective in reducing uncertainty in deep structure parameters when modelling only surface-wave dispersion data over a limited period range. We then apply the method to receiver functions derived from earthquake records at one site and two datasets of Rayleigh-wave phase velocity obtained from microtremor array surveys performed in central Tokyo, Japan. The estimated subsurface structure is in good agreement with the results of previous seismic refraction surveys and deep borehole data. We also conclude that the proposed method can provide a more accurate and reliable model than individual inversions of either receiver function data only or surface-wave dispersion data only.

Three-dimensional Imaging of Subsurface Structures by Resistivity Tomography (전기비저항 토모그래피에 의한 지하구조의 3차원 영상화)

  • Yi Myeong-Jong;Kim Jung-Ho;Chung Seung-Hwan;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.236-249
    • /
    • 2002
  • We have extended the three-dimensional (3-D) resistivity imaging algorithm to cover the 3-D resistivity tomography problem, where resistivity data are acquired using electrodes installed in several boreholes as well as at the earth surface. The imaging algorithm consists of the 3-D finite element forward modeling and least-squares inversion scheme, where the ACB (Active Constraint Balancing) is adopted to enhance the resolving power of the inversion. Sensitivity analysis with numerical verifications shows that 3-D resistivity tomography is a very appealing method and can be used to get 3-D attitude of subsurface structures with very high-resolution. Moreover, we could accurately handle the topography effect, which could cause artifacts in the resistivity tomography. In the application of 3-D resistivity tomography to the real field data set acquired at the quarry mine, we could derive a very reasonable and accurate image of the subsurface.

Plane-wave Full Waveform Inversion Using Distributed Acoustic Sensing Data in an Elastic Medium (탄성매질에서의 분포형 음향 센싱 자료를 활용한 평면파 전파형역산)

  • Seoje, Jeong;Wookeen, Chung;Sungryul, Shin;Sumin, Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.214-216
    • /
    • 2022
  • Distributed acoustic sensing (DAS), an increasingly growing acquisition technique in the oil and gas exploration and seismology fields, has been used to record seismic signals using optical cables as receivers. With the development of imaging methods for DAS data, full waveform inversion (FWI) is been applied to DAS data to obtain high-resolution property models such as P- and S-velocity. However, because the DAS systems measure strain from the phase distortion between two points along optical cables, DAS data must be transformed from strain to particle velocity for FWI algorithms. In this study, a plane-wave FWI algorithm based on the relationship between strain and horizontal particle velocity in the plane-wave assumption is proposed to apply FWI to DAS data. Under the plane-wave assumption, strain equals the horizontal particle velocity, which is scaled by the velocity at the receiver position. This relationship was confirmed using a numerical experiment. Furthermore, 4-layer and modified Marmousi-2 velocity models were used to verify the applicability of the proposed FWI algorithm in various survey environments. The proposed FWI was implemented in land and marine survey environments and provided high-resolution P- and S-velocity models.

A Study on Application of HWAW Method to the Non-horizontally Layered Soil Structure (HWAW 기법의 비수평 출상구조지반 적용에 대한 고찰)

  • Bang, Eun-Seok;Park, Heon-Joon;Park, Hyung-Choon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.5-17
    • /
    • 2009
  • In HWAW method, experimental dispersion curve is obtained through time-frequency analysis, and inversion procedure is based on the forward modeling which considers full wavefield. Therefore, it enables us to use relatively short testing setup and has advantage for two dimensional subsurface imaging compared with another surface wave methods. Numerical study was performed to verify that the HWAW method can be applied to non-horizontally layerd soil structure. The experimental dispersion curves obtained from HWAW method agreed with the theoretical dispersion curves based on full wavefield. Experimental dispersion curves are mainly more affected by the region between two receivers than by the region from source to the first receiver. Fluctuation phenomena of dispersion curve can be reduced by adequate receiver spacing setup. From numerical study, it was thought that reliable Vs distribution map can be constructed by HWAW method and finally subsurface imaging was tried in the real field.

A Study of Feasibility of Dipole-dipole Electric Method to Metallic Ore-deposit Exploration in Korea (국내 금속광 탐사를 위한 쌍극자-쌍극자 전기탐사의 적용성 연구)

  • Min, Dong-Joo;Jung, Hyun-Key;Park, Sam-Gyu;Chon, Hyo-Taek;Kwak, Na-Eun
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.250-262
    • /
    • 2008
  • In order to assess the feasibility of the dipole-dipole electric method to the investigation of metallic ore deposit, both field data simulation and inversion are carried out for several simplified ore deposit models. Our interest is in a vein-type model, because most of the ore deposits (more than 70%) exist in a vein type in Korea. Based on the fact that the width of the vein-type ore deposits ranges from tens of centimeters to 2m, we change the width and the material property of the vein, and we use 40m-electrode spacing for our test. For the vein-type model with too small width, the low resistivity zone is not detected, even though the resistivity of the vein amounts to 1/300 of that of the surrounding rock. Considering a wide electrode interval and cell size used in the inversion, it is natural that the size of the low resistivity zone is overestimated. We also perform field data simulation and inversion for a vein-type model with surrounding hydrothermal alteration zones, which is a typical structure in an epithermal ore deposits. In the model, the material properties are assumed on the basis of resistivity values directly observed in a mine originated from an epithermal ore deposits. From this simulation, we can also note that the high resistivity value of the vein does not affect the results when the width of the vein is narrow. This indicates that our main target should be surrounding hydrothermal alteration zones rather than veins in field survey. From these results, we can summarize that when the vein is placed at the deep part and the difference of resistivity values between the vein and the surrounding rock is not large enough, we cannot detect low resistivity zone and interpret the subsurface structures incorrectly using the electric method performed at the surface. Although this work is a little simple, it can be used as references for field survey design and field data Interpretation. If we perform field data simulation and inversion for a number of models and provide some references, they will be helpful in real field survey and interpretation.

Numerical Investigation of Freezing and Thawing Process in Buried Chilled Gas Pipeline (매설 냉각가스관의 동결-융해에 대한 수치해석 연구)

  • Shin, Hosung;Park, Heungrock
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.6
    • /
    • pp.17-26
    • /
    • 2016
  • Characteristic behaviors of geo-structure during freezing and thawing process have to be understood based on fundamental knowledge on phase change in porous soil and interaction between soil and structure. Inversion analysis using published one-dimensional soil freezing tests was conducted to suggest a mechanical model to consider an effect of the ice saturation on Young's modulus. Silty soil was more sensitive to temperature than weathered granite soil and sand, and weathered granite soil was more affected by initial water saturation in stiffness decrease than silty soil. Numerical simulations on chilled gas pipeline showed that shielding effect from surrounding frozen zone around the pipe decreases impact from external load onto the pipe. And a pipe installed in sand backfill showed more heaving due to relatively low stiffness of sand during freezing than that of surrounding in-situ weather granite soil. However, it had more stable stress condition due to effective stress redistribution from external load.