• Title/Summary/Keyword: Numerical forecast

Search Result 258, Processing Time 0.022 seconds

Comparison of Spatial Interpolation Processing Environments for Numerical Model Rainfall and Soil Moisture Data (수치모델 강우 및 토양수분 자료의 공간보간 처리환경의 비교)

  • Seung-Min, Lee;Sung-Won, Choi;Seung-Jae, Lee;Man-Il, Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.337-345
    • /
    • 2022
  • For data such as rainfall and soil moisture, it is important to obtain the values of all points required as geostatistical data. Spatial interpolation is generally performed in this process, and commercial software such as ArcGIS is often used. However, commercial software has fatal drawbacks due to its high expertise and cost. In this study, R, an open source-based environment with ArcGIS, a commercial software, was used to compare the differences according to the processing environment when performing spatial interpolation. The data for spatial interpolation was weather forecast data calculated through Land-Atmosphere Modeling Package (LAMP)-WRF model, and soil moisture data calculated for each cumulative rainfall scenario. There was no difference in the output value in the two environments, but there was a difference in user interface and calculation time. The results of spatial interpolation work in the test bed showed that the average time required for R was 5 hours and 1 minute, and for ArcGIS, the average time required was 4 hours and 40 minutes, respectively, showing a difference of 7.5%. The results of this study are meaningful in that researchers can derive the same results in a commercial software environment and an open source-based environment, and can choose according to the researcher's environment and level.

Improvement in Regional-Scale Seasonal Prediction of Agro-Climatic Indices Based on Surface Air Temperature over the United States Using Empirical Quantile Mapping (경험적 분위사상법을 이용한 미국 지표 기온 기반 농업기후지수의 지역 규모 계절 예측성 개선)

  • Chan-Yeong, Song;Joong-Bae, Ahn;Kyung-Do, Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.201-217
    • /
    • 2022
  • The United States is one of the largest producers of major crops such as wheat, maize, and soybeans, and is a major exporter of these crops. Therefore, it is important to estimate the crop production of the country in advance based on reliable long- term weather forecast information for stable crops supply and demand in Korea. The purpose of this study is to improve the seasonal predictability of the agro-climatic indices over the United States by using regional-scale daily temperature. For long-term numerical weather prediction, a dynamical downscaling is performed using Weather Research and Forecasting (WRF) model, a regional climate model. As the initial and lateral boundary conditions of WRF, the global hourly prediction data obtained from the Pusan National University Coupled General Circulation Model (PNU CGCM) are used. The integration of WRF is performed for 22 years (2000-2021) for period from June to December of each year. The empirical quantile mapping, one of the bias correction methods, is applied to the timeseries of downscaled daily mean, minimum, and maximum temperature to correct the model biases. The uncorrected and corrected datasets are referred WRF_UC and WRF_C, respectively in this study. The daily minimum (maximum) temperature obtained from WRF_UC presents warm (cold) biases over most of the United States, which can be attributed to the underestimated the low (high) temperature range. The results show that WRF_C simulates closer to the observed temperature than WRF_UC, which lead to improve the long- term predictability of the temperature- based agro-climatic indices.

Sensitivity of Simulated Water Temperature to Vertical Mixing Scheme and Water Turbidity in the Yellow Sea (수직 혼합 모수화 기법과 탁도에 따른 황해 수온 민감도 실험)

  • Kwak, Myeong-Taek;Seo, Gwang-Ho;Choi, Byoung-Ju;Kim, Chang-Sin;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.3
    • /
    • pp.111-121
    • /
    • 2013
  • Accurate prediction of sea water temperature has been emphasized to make precise local weather forecast and to understand change of ecosystem. The Yellow Sea, which has turbid water and strong tidal current, is an unique shallow marginal sea. It is essential to include the effects of the turbidity and the strong tidal mixing for the realistic simulation of temperature distribution in the Yellow Sea. Evaluation of ocean circulation model response to vertical mixing scheme and turbidity is primary objective of this study. Three-dimensional ocean circulation model(Regional Ocean Modeling System) was used to perform numerical simulations. Mellor- Yamada level 2.5 closure (M-Y) and K-Profile Parameterization (KPP) scheme were selected for vertical mixing parameterization in this study. Effect of Jerlov water type 1, 3 and 5 was also evaluated. The simulated temperature distribution was compared with the observed data by National Fisheries Research and Development Institute to estimate model's response to turbidity and vertical mixing schemes in the Yellow Sea. Simulations with M-Y vertical mixing scheme produced relatively stronger vertical mixing and warmer bottom temperature than the observation. KPP scheme produced weaker vertical mixing and did not well reproduce tidal mixing front along the coast. However, KPP scheme keeps bottom temperature closer to the observation. Consequently, numerical ocean circulation simulations with M-Y vertical mixing scheme tends to produce well mixed vertical temperature structure and that with KPP vertical mixing scheme tends to make stratified vertical temperature structure. When Jerlov water type is higher, sea surface temperature is high and sea bottom temperature is low because downward shortwave radiation is almost absorbed near the sea surface.

Seasonal Circulation and Estuarine Characteristics in the Jinhae and Masan Bay from Three-Dimensional Numerical Experiments (3차원 수치모의 실험을 통한 진해·마산만의 계절별 해수순환과 염하구 특성)

  • JIHA KIM;BYOUNG-JU CHOI;JAE-SUNG CHOI;HO KYUNG HA
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.2
    • /
    • pp.77-100
    • /
    • 2024
  • Circulation, tides, currents, harmful algal blooms, water quality, and hypoxic conditions in Jinhae-Masan Bay have been extensively studied. However, these previous studies primarily focused on short-term variations, and there was limited detailed investigation into the physical mechanisms responsible for ocean circulation in the bays. Oceanic processes in the bays, such as pollutant dispersal, changes on a seasonal time scale. Therefore, this study aimed to understand how the circulation in Jinhae-Masan Bay varies seasonally and to examine the effects of tides, winds, and river discharges on regional ocean circulation. To achieve this, a three-dimensional ocean circulation model was used to simulate circulation patterns from 2016 to 2018, and sensitivity experiments were conducted. This study reveals that convective estuarine circulation develops in Jinhae and Masan Bays, characterized by the inflow of deep oceanic water from the Korea Strait through Gadeoksudo, while surface water flows outward. This deep water intrusion divides into northward and westward branches. In this study, the volume transport was calculated along the direction of bottom channels in each region. The meridional water exchange in the eastern region of Jinhae Bay is 2.3 times greater in winter and 1.4 times greater in summer compared to that of zonal exchange in the western region. In the western region of Jinhae Bay, the circulation pattern varies significantly by season due to changes in the balance of forces. During winter, surface currents flow southward and bottom currents flow northward, strengthening the north-south convective circulation due to the combined effects of northwesterly winds and the slope of the sea surface. In contrast, during summer, southwesterly winds cause surface seawater to flow eastward, and the elevated sea surface in the southeastern part enhances northward barotropic pressure gradient intensifying the eastward surface flow. The density gradient and southward baroclinic pressure gradient increase in the lower layer, causing a strong westward inflow of seawater from Gadeoksudo, enhancing the zonal convective circulation by 26% compared to winter. The convective circulation in the western Jinhae Bay is significantly influenced by both tidal current and wind during both winter and summer. In the eastern Jinhae Bay and Masan Bay, surface water flows outward to the open sea in all seasons, while bottom water flows inward, demonstrating a typical convective estuarine circulation. In winter, the contributions of wind and freshwater influx are significant, while in summer, the influence of mixing by tidal currents plays a major role in the north-south convective circulation. In the eastern Jinhae Bay, tidally driven residual circulation patterns, influenced by the local topography, are distinct. The study results are expected to enhance our understanding of pollutant dispersion, summer hypoxic events, and the abundance of red tide organisms in these bays.

Variation of Inflow Density Currents with Different Flood Magnitude in Daecheong Reservoir (홍수 규모별 대청호에 유입하는 하천 밀도류의 특성 변화)

  • Yoon, Sung-Wan;Chung, Se-Woong;Choi, Jung-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1219-1230
    • /
    • 2008
  • Stream inflows induced by flood runoffs have a higher density than the ambient reservoir water because of a lower water temperature and elevated suspended sediment(SS) concentration. As the propagation of density currents that formed by density difference between inflow and ambient water affects reservoir water quality and ecosystem, an understanding of reservoir density current is essential for an optimization of filed monitoring, analysis and forecast of SS and nutrient transport, and their proper management and control. This study was aimed to quantify the characteristics of inflow density current including plunge depth($d_p$) and distance($X_p$), separation depth($d_s$), interflow thickness($h_i$), arrival time to dam($t_a$), reduction ratio(${\beta}$) of SS contained stream inflow for different flood magnitude in Daecheong Reservoir with a validated two-dimensional(2D) numerical model. 10 different flood scenarios corresponding to inflow densimetric Froude number($Fr_i$) range from 0.920 to 9.205 were set up based on the hydrograph obtained from June 13 to July 3, 2004. A fully developed stratification condition was assumed as an initial water temperature profile. Higher $Fr_i$(inertia-to-buoyancy ratio) resulted in a greater $d_p,\;X_p,\;d_s,\;h_i$, and faster propagation of interflow, while the effect of reservoir geometry on these characteristics was significant. The Hebbert equation that estimates $d_p$ assuming steady-state flow condition with triangular cross section substantially over-estimated the $d_p$ because it does not consider the spatial variation of reservoir geometry and water surface changes during flood events. The ${\beta}$ values between inflow and dam sites were decreased as $Fr_i$ increased, but reversed after $Fr_i$>9.0 because of turbulent mixing effect. The results provides a practical and effective prediction measures for reservoir operators to first capture the behavior of turbidity inflow.

THE FOREIGN EXCHANGE RATE UNDER RATIONAL EXPECTATION (이성적(理性的) 기대하(期待下)의 환율행태분석(換率行態分析))

  • Yu, Il-Seong
    • The Korean Journal of Financial Management
    • /
    • v.6 no.1
    • /
    • pp.31-62
    • /
    • 1989
  • By using deterministic dynamic models, we observe the behavior of the foreign exchange rate of a small open economy with rational expectation formation and different restrictions on the international economic integrations. First, an economy connected to the world by purchasing power parity and uncovered interest parity is studied in the next section. In both sections, financial assets available in the economy are domestic money and bonds. Stocks are added as a financial instrument in the next section, and real capital accumulation is also taken into account. Furthermore, the economy concerned there is fairly autonomous, and not directly governed by either purchasing power parity or uncovered interest parity. The expectation formation used throughout the whole paper is complete perfect foresight, which is the certainty version of rational expectation and free from any forecast errors. It is found that upon monetary expansion the short run depreciation of the foreign exchange rate is a fairly robust result regardless of the degree of the international economic integration, while it is not true for fiscal expansion. The expectation on the long run state significantly affects the short run response of the exchange rate. All of our models postulate that the current account should be balanced eventually. As the result, the short run behavior of the exchange rate is affected by the expectation on the long run balance and may well be a blend of the traditional flow view and modem asset view. The initial overshooting of the exchange rate is easily observed even in the fairly autonomous economy Furthermore, the initial overshooting is not reduced over time, but augmented for some time before it is eventually eliminated. As long as we maintain rational expectaion, introducing time delay in the adjustment of the foreign goods price to the foreign exchange rate does not make much difference.

  • PDF

Comparison of Wind Vectors Derived from GK2A with Aeolus/ALADIN (위성기반 GK2A의 대기운동벡터와 Aeolus/ALADIN 바람 비교)

  • Shin, Hyemin;Ahn, Myoung-Hwan;KIM, Jisoo;Lee, Sihye;Lee, Byung-Il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1631-1645
    • /
    • 2021
  • This research aims to provide the characteristics of the world's first active lidar sensor Atmospheric Laser Doppler Instrument (ALADIN) wind data and Geostationary Korea Multi Purpose Satellite 2A (GK2A) Atmospheric Motion Vector (AMV) data by comparing two wind data. As a result of comparing the data from September 2019 to August 1, 2020, The total number of collocated data for the AMV (using IR channel) and Mie channel ALADIN data is 177,681 which gives the Root Mean Square Error (RMSE) of 3.73 m/s and the correlation coefficient is 0.98. For a more detailed analysis, Comparison result considering altitude and latitude, the Normalized Root Mean Squared Error (NRMSE) is 0.2-0.3 at most latitude bands. However, the upper and middle layers in the lower latitudes and the lower layer in the southern hemispheric are larger than 0.4 at specific latitudes. These results are the same for the water vapor channel and the visible channel regardless of the season, and the channel-specific and seasonal characteristics do not appear prominently. Furthermore, as a result of analyzing the distribution of clouds in the latitude band with a large difference between the two wind data, Cirrus or cumulus clouds, which can lower the accuracy of height assignment of AMV, are distributed more than at other latitude bands. Accordingly, it is suggested that ALADIN wind data in the southern hemisphere and low latitude band, where the error of the AMV is large, can have a positive effect on the numerical forecast model.

A Study on Commodity Asset Investment Model Based on Machine Learning Technique (기계학습을 활용한 상품자산 투자모델에 관한 연구)

  • Song, Jin Ho;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.127-146
    • /
    • 2017
  • Services using artificial intelligence have begun to emerge in daily life. Artificial intelligence is applied to products in consumer electronics and communications such as artificial intelligence refrigerators and speakers. In the financial sector, using Kensho's artificial intelligence technology, the process of the stock trading system in Goldman Sachs was improved. For example, two stock traders could handle the work of 600 stock traders and the analytical work for 15 people for 4weeks could be processed in 5 minutes. Especially, big data analysis through machine learning among artificial intelligence fields is actively applied throughout the financial industry. The stock market analysis and investment modeling through machine learning theory are also actively studied. The limits of linearity problem existing in financial time series studies are overcome by using machine learning theory such as artificial intelligence prediction model. The study of quantitative financial data based on the past stock market-related numerical data is widely performed using artificial intelligence to forecast future movements of stock price or indices. Various other studies have been conducted to predict the future direction of the market or the stock price of companies by learning based on a large amount of text data such as various news and comments related to the stock market. Investing on commodity asset, one of alternative assets, is usually used for enhancing the stability and safety of traditional stock and bond asset portfolio. There are relatively few researches on the investment model about commodity asset than mainstream assets like equity and bond. Recently machine learning techniques are widely applied on financial world, especially on stock and bond investment model and it makes better trading model on this field and makes the change on the whole financial area. In this study we made investment model using Support Vector Machine among the machine learning models. There are some researches on commodity asset focusing on the price prediction of the specific commodity but it is hard to find the researches about investment model of commodity as asset allocation using machine learning model. We propose a method of forecasting four major commodity indices, portfolio made of commodity futures, and individual commodity futures, using SVM model. The four major commodity indices are Goldman Sachs Commodity Index(GSCI), Dow Jones UBS Commodity Index(DJUI), Thomson Reuters/Core Commodity CRB Index(TRCI), and Rogers International Commodity Index(RI). We selected each two individual futures among three sectors as energy, agriculture, and metals that are actively traded on CME market and have enough liquidity. They are Crude Oil, Natural Gas, Corn, Wheat, Gold and Silver Futures. We made the equally weighted portfolio with six commodity futures for comparing with other commodity indices. We set the 19 macroeconomic indicators including stock market indices, exports & imports trade data, labor market data, and composite leading indicators as the input data of the model because commodity asset is very closely related with the macroeconomic activities. They are 14 US economic indicators, two Chinese economic indicators and two Korean economic indicators. Data period is from January 1990 to May 2017. We set the former 195 monthly data as training data and the latter 125 monthly data as test data. In this study, we verified that the performance of the equally weighted commodity futures portfolio rebalanced by the SVM model is better than that of other commodity indices. The prediction accuracy of the model for the commodity indices does not exceed 50% regardless of the SVM kernel function. On the other hand, the prediction accuracy of equally weighted commodity futures portfolio is 53%. The prediction accuracy of the individual commodity futures model is better than that of commodity indices model especially in agriculture and metal sectors. The individual commodity futures portfolio excluding the energy sector has outperformed the three sectors covered by individual commodity futures portfolio. In order to verify the validity of the model, it is judged that the analysis results should be similar despite variations in data period. So we also examined the odd numbered year data as training data and the even numbered year data as test data and we confirmed that the analysis results are similar. As a result, when we allocate commodity assets to traditional portfolio composed of stock, bond, and cash, we can get more effective investment performance not by investing commodity indices but by investing commodity futures. Especially we can get better performance by rebalanced commodity futures portfolio designed by SVM model.