• Title/Summary/Keyword: Numerical dispersion

Search Result 586, Processing Time 0.027 seconds

Mitigation of Ammonia Dispersion with Mesh Barrier under Various Atmospheric Stability Conditions

  • Gerdroodbary, M. Barzegar;Mokhtari, Mojtaba;Bishehsari, Shervin;Fallah, Keivan
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.3
    • /
    • pp.125-136
    • /
    • 2016
  • In this study, the effects of the mesh barrier on the free dispersion of ammonia were numerically investigated under different atmospheric conditions. This study presents the detail and flow feature of the dispersion of ammonia through the mesh barrier on various free stream conditions to decline and limit the toxic danger of the ammonia. It is assumed that the dispersion of the ammonia occurred through the leakage in the pipeline. Parametric studies were conducted on the performance of the mesh barrier by using the Reynolds-averaged Navier-Stokes equations with realizable k-${\varepsilon}$ turbulence model. Numerical simulations of ammonia dispersion in the presence of mesh barrier revealed significant results in a fully turbulent free stream condition. The results clearly show that the flow behavior was found to be a direct result of mesh size and ammonia dispersion is highly influenced by these changes in flow patterns in downstream. In fact, the flow regime becomes laminar as flow passes through mesh barrier. According to the results, the mesh barrier decreased the maximum concentration of the ammonia gas and limited the risk zone (more than 500 ppm) lower than 2 m height. Furthermore, a significant reduction occurs in the slope of the upper boundary of $NH_3$ risk zone distribution at downstream when a mesh barrier is presented. Thus, this device highly restricts the leak distribution of ammonia in the industrial plan.

A Study on the Pollutant Dispersion over a Mountain Valley Region (II) : Numerical Simulation (산악 계곡지형에서의 오염확산에 관한 연구(II) :수치해석)

  • Shim Woo-Sup;Kim Seogcheol;Yoo Seong-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1060-1071
    • /
    • 2005
  • Passive gas dispersions over a 1/1000 scale terrain model at Eiffel type wind tunnel were reproduced by numerical simulation. Large eddy simulation was used to treat the sub-grid scale turbulences. The terrain features were represented by millions of point forces densely distributed over the solid surface using the virtual boundary method. The model simulations agreed very well with the experiments in a consistent fashion for all wind directions. The measured profiles of the wind speeds as well as the tracer gas concentrations were nicely simulated by the CFD model at most locations scattered over the model terrain. With scale factor adjusted and the thermal stratification effects incorporated, the CFD model was expected to provide reliable information on pollutant dispersions over the real complex terrains.

Numerical Simulation for Diffusion and Movement of Air Pollutants in Atmospheric Flow Coastal Urban Region (연안도시지역의 대기유동장에서 대기오염물질의 확산과 이동에 관한 수치모의)

  • 이화운;김유근
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.437-449
    • /
    • 1997
  • To predict diffusion and movement of k pollutants In coastal urban region a numerical simulation shouts be consider atmospheric flow field with land-sea breeze, mountain-valley wand and urban effects. In this study we used Lagrangian [article dispersion method In the atmospheric flow field of Pusan coastal region to depict diffusion and movement of the Pollutants emoted from particular sources and employed two grid system, one for large scale calculating region with the coarse mesh grid (CMG) and the other for the small region with the One mesh 914 (FMG). It was found that the dispersion pattern of the pollutants followed local circulation system in coastal urban area and wale air pollutants exhausted from Sasang moved Into Baekyang and Jang moutain, air pollutants from Janglim moved into Hwameong-dong region.

  • PDF

Numerical Simulations of Using CIP Method for Dispersion of Pollutants around a Building (CIP 방법을 이용한 건물 주위의 오염물 확산에 대한 수치해석)

  • Hong, Bo-Young;Park, Chan-Guk
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.723-728
    • /
    • 2001
  • Wind flow perturbations, recirculations and turbulence generated by buildings often dominate air pollutant distributions around buildings. This paper describes dispersion of contaminants in the vicinity of a building by solving the concentration equation based on previously simulated wind flow field. Turbulence closure is achieved by using the standard k-e two-equation model. The paper shows application of the CIP method for solving a species concentration equation of contaminant gas around a rectangular building for two different sources under conditions of neutral atmospheric stratification. Results have been compared to the experimental data and the previous numerical results by hybrid scheme. The computational results of concentration profiles by the CIP method agree well with experimental data.

  • PDF

Evaluation of Numerical Experiment of Pollution Dispersion on the Sewer Crack Occurrence (하수관거 균열발생에 따른 오염확산의 수치실험 평가)

  • Park, Jaesung;Bae, Wooseok;Lee, Hojin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.5-9
    • /
    • 2008
  • Because sewer is embedded in land, the pollutant permeating to underground so fast can cause contamination of soil when crack of sewer occurs. In this study, numerical modelling on dispersion of pollutant at sewer crack was performed. Based upon the study, the following conclusions were obtained. It was shown that transfer direction of pollutant was similar to the flow with topography slope of surface. It was exposed that the pollutant permeated to 8~10m depth. It is expected to offer efficiency in sewer management in the future through this research.

  • PDF

A Numerical Experiments on the Atmospheric Circulation over a Complex terrain around Coastal Area. Part I : A Verification of Proprietyh of Local Circulation Model Using the Linear Theory (연안부근 복잡지형의 대기유동장 수치실험 I -선형이론을 이용한 국지순환모형의 타당성 검토-)

  • 이화운;김유근;정우식
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.555-558
    • /
    • 1999
  • A sea/land breeze circulation system and a regional scale circulation system are formed at a region which has complex terrain around coastal area and affect to the dispersion and advection of air pollutants. Therefore, it is important that atmospheric circulation model should be well designed for the simulation of regional dispersion of air pollutants. For this, Local Circulation Model, LCM which has an ability of high resolution is used. To verify the propriety of a LCM, we compared the simulation result of LCM with an exact solution of a linear theory over a simple topography. Since they presented almost the same value and pattern of a vertical velocity at the level of 1 km, we had a reliance of a LCM. For the prediction of dispersion and advection of air pollutants, the wind filed should be calculated with high accuracy. A numerical simulation using LCM will provide more accurate results over a complex terrain around coastal area.

  • PDF

Numerical Prediction of Contaminant Dispersion within the Laminar Flow Field using FDM (FDM을 이용한 층유유동장내에서 오염물질확산에 관한 연구)

  • 김양술
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.56-63
    • /
    • 1995
  • A simulation of contaminant dispersion in a water reservoir has been done using 2-D finite difference method(FDM). The steady state velocity field of the reservoir was computed using stream function-vorticity formulation of Wavier-Stokes equation and continuity equation. Based on the computed steady state velocity field, the transient convective diffusion equation of the contaminant dispersion was computed. For the 1m$\times$1m reservoir model with inlet and outlet attached, it was shown that the center of circulation located toward right. For the numerical values of v =0.01($\textrm{cm}^2$/s) and D=0.6($\textrm{cm}^2$/s) and the flow of 50($\textrm{cm}^3$/s ), it was determined that the outflow had to be shut down in 18 seconds to prevent from severe pollution. Also the required time was computed to be 6 seconds for the inflow of 100 ($\textrm{cm}^3$/s). The result of this study is considered, hopefully, to be useful for the design of the water reservoir systems that are the subjects to various contamination.

  • PDF

Eulerian-Lagrangian Hybrid Numerical Method for the Longitudinal Dispersion Equation

  • Jun, Kyung-Soo;Lee, Kil-Seong
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.85-97
    • /
    • 1994
  • A hybrid finite difference method for the longitudinal dispersion equation, which is based on combining the Holly-Preissmann scheme with fifth-degree Hermite interpolating polynomial and the generalized Crank-Nicholson scheme, is described and comparatively evaluated with other characteristics-based numerical methods. Longitudinal dispersion of an instantaneously-loaded pollutant source is simulated, and computational results are compared with the exact solution. The present method is free from wiggles regardless of the Courant number, and exactly reproduces the location of the peak concentration. Overall accuracy of the computation increases for smaller value of the weighting factor, $\theta$of the model. Larger values of $\theta$ overestimates the peak concentration. Smaller Courant number yields better accuracy, in general, but the sensitivity is very low, especially when the value of $\theta$ is small. From comparisons with the hybrid method using cubic interpolating polynomial and with splitoperator methods, the present method shows the best performance in reproducing the exact solution as the advection becomes more dominant.

  • PDF

CUSUM Chart to Monitor Dispersion Matrix for Multivariate Normal Process

  • Chang, Duk-Joon;Kwon, Yong-Man;Hong, Yeon-Woong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.89-95
    • /
    • 2003
  • Cumulative sum(CUSUM) control charts for monitoring dispersion matrix under multivariate normal process are proposed. Performances of the proposed CUSUM charts are measured in terms of average run length(ARL) by simulation. Numerical results show that small reference values of the proposed CUSUM chart is more efficient for small shifts in the production process.

  • PDF

A New Lagrangian Stochastic Model for Prediction of Particle Dispersion in Turbulent Boundary Layer Flow (경계층 유동에서 입자확산의 예측을 위한 라그랑지안 확률모델)

  • Kim, Byung-Gu;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1851-1856
    • /
    • 2003
  • A new Lagrangian stochastic dispersion model is developed by combining the GLM(generalized Langevin model) and the elliptic relaxation method. Under the physically plausible assumptions a simple analytical solution of elliptic relaxation is obtained. To compare the performance of our model with other model, the statistics of particle velocity as well as concentration are investigated. Numerical simulation results show good agreement with available experimental data.

  • PDF