• Title/Summary/Keyword: Numerical algorithm

Search Result 4,147, Processing Time 0.033 seconds

AGV-induced floor micro-vibration assessment in LCD factories by using a regressional modified Kanai-Tajimi moving force model

  • Lee, C.L.;Su, R.K.L.;Wang, Y.P.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.543-568
    • /
    • 2013
  • This study explores the floor micro-vibrations induced by the automated guided vehicles (AGVs) in liquid-crystal-display (LCD) factories. The relationships between moving loads and both the vehicle weights and speeds were constructed by a modified Kanai-Tajimi (MKT) power spectral density (PSD) function whose best-fitting parameters were obtained through a regression analysis by using experimental acceleration responses of a small-scale three-span continuous beam model obtained in the laboratory. The AGV induced floor micro-vibrations under various AGV weights and speeds were then assessed by the proposed regressional MKT model. Simulation results indicate that the maximum floor micro-vibrations of the target LCD factory fall within the VC-B and VC-C levels when AGV moves at a lower speed of 1.0 m/s, while they may exceed the acceptable VC-B level when AGV moves at a higher speed of 1.5 m/s. The simulated floor micro-vibration levels are comparable to those of typical LCD factories induced by AGVs moving normally at a speed between 1.0 m/s and 2.0 m/s. Therefore, the numerical algorithm that integrates a simplified sub-structural multi-span continuous beam model and a proposed regressional MKT moving force model can provide a satisfactory prediction of AGV-induced floor micro-vibrations in LCD factories, if proper parameters of the MKT moving force model are adopted.

Couette-Poiseuille flow based non-linear flow over a square cylinder near plane wall

  • Bhatt, Rajesh;Maiti, Dilip K.;Alam, Md. Mahbub;Rehman, S.
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.331-341
    • /
    • 2018
  • A numerical study on the flow over a square cylinder in the vicinity of a wall is conducted for different Couette-Poiseuille-based non-uniform flow with the non-dimensional pressure gradient P varying from 0 to 5. The non-dimensional gap ratio L (=$H^{\ast}/a^{\ast}$) is changed from 0.1 to 2, where $H^{\ast}$ is gap height between the cylinder and wall, and $a^{\ast}$ is the cylinder width. The governing equations are solved numerically through finite volume method based on SIMPLE algorithm on a staggered grid system. Both P and L have a substantial influence on the flow structure, time-mean drag coefficient ${\bar{C}}_D$, fluctuating (rms) lift coefficient ($C_L{^{\prime}}$), and Strouhal number St. The changes in P and L leads to four distinct flow regimes (I, II, III and IV). Following the flow structure change, the ${\bar{C}}_D$, $C_L{^{\prime}}$, and St all vary greatly with the change in L and/or P. The ${\bar{C}}_D$ and $C_L{^{\prime}}$ both grow with increasing P and/or L. The St increases with P for a given L, being less sensitive to L for a smaller P (< 2) and more sensitive to L for a larger P (> 2). A strong relationship is observed between the flow regimes and the values of ${\bar{C}}_D$, $C_L{^{\prime}}$ and St. An increase in P affects the pressure distribution more on the top surface than on bottom surface while an increase in L does the opposite.

Anti-sparse representation for structural model updating using l norm regularization

  • Luo, Ziwei;Yu, Ling;Liu, Huanlin;Chen, Zexiang
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.477-485
    • /
    • 2020
  • Finite element (FE) model based structural damage detection (SDD) methods play vital roles in effectively locating and quantifying structural damages. Among these methods, structural model updating should be conducted before SDD to obtain benchmark models of real structures. However, the characteristics of updating parameters are not reasonably considered in existing studies. Inspired by the l norm regularization, a novel anti-sparse representation method is proposed for structural model updating in this study. Based on sensitivity analysis, both frequencies and mode shapes are used to define an objective function at first. Then, by adding l norm penalty, an optimization problem is established for structural model updating. As a result, the optimization problem can be solved by the fast iterative shrinkage thresholding algorithm (FISTA). Moreover, comparative studies with classical regularization strategy, i.e. the l2 norm regularization method, are conducted as well. To intuitively illustrate the effectiveness of the proposed method, a 2-DOF spring-mass model is taken as an example in numerical simulations. The updating results show that the proposed method has a good robustness to measurement noises. Finally, to further verify the applicability of the proposed method, a six-storey aluminum alloy frame is designed and fabricated in laboratory. The added mass on each storey is taken as updating parameter. The updating results provide a good agreement with the true values, which indicates that the proposed method can effectively update the model parameters with a high accuracy.

Reconfigurable Flight Control Design for the Complex Damaged Blended Wing Body Aircraft

  • Ahn, Jongmin;Kim, Kijoon;Kim, Seungkeun;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.290-299
    • /
    • 2017
  • Reconfigurable flight control using various kinds of adaptive control methods has been studied since the 1970s to enhance the survivability of aircraft in case of severe in-flight failure. Early studies were mainly focused on the failure of actuators. Recently, studies of reconfigurable flight controls that can accommodate complex damage (partial wing and tail loss) in conventional aircraft were reported. However, the partial wing loss effects on the aerodynamics of conventional type aircraft are quite different to those of BWB(blended wing body) aircraft. In this paper, a reconfigurable flight control algorithm was designed using a direct model reference adaptive method to overcome the instability caused by a complex damage of a BWB aircraft. A model reference adaptive control was incorporated into the inner loop rate control system enhancing the performance of the baseline control to cope with abrupt loss of stability. Gains of the model reference adaptive control were polled out using the Liapunov's stability theorem. Outer loop attitude autopilot was designed to manage roll and pitch of the BWB UAV as well. A 6-DOF dynamic model was built-up, where the normal flight can be made to switch to the damaged state abruptly reflecting the possible real flight situation. 22% of right wing loss as well as 25% loss for both vertical tail and rudder control surface were considered in this study. Static aerodynamic coefficients were obtained via wind tunnel test. Numerical simulations were conducted to demonstrate the performance of the reconfigurable flight control system.

TMD-Based Adaptive Smart Structural Control System for Multi-Hazard (TMD 기반 적응형 스마트 구조제어시스템의 멀티해저드 적응성 평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.720-725
    • /
    • 2017
  • This paper evaluated the safety and serviceability of a building structure considering the multi-hazard and proposed TMD-based adaptive smart control system to improve the structural performance. To make multi-hazard loads, an artificial earthquake and artificial wind loads were generated based on representative regions of strong seismicity and strong wind in U.S.A. The safety and serviceability of a 20-story example building structure were investigated using the generated artificial loads. A smart TMD was employed to improve the safety and serviceability of the example structure and its capacity of structural performance improvement was evaluated. The smart TMD was comprised of a MR (magnetorheological) damper. Numerical analysis showed that the example building structure could not satisfy the design limit of safety and serviceability with respect to multi-hazard. The smart TMD effectively reduced the seismic responses associated with the safety and wind-induce responses associated with serviceability.

A Study on the Relation between Towing Force of Tow Vessel and Towing Point and Behavior of Towed Ship (예인력과 피예인선의 예인 지점과 거동에 관한 연구)

  • Nam, Taek-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.637-642
    • /
    • 2013
  • In this paper, an analysis results of towing force and towing points which are dominating factors to determine the behavior of towed ship are introduced. The towing force and towing points to achive the desired posture and its position of the towed vessel are derived based on simplified dynamics and linearization method. LQR algorithm for posture control is applied to linearized system and numerical simulation is also executed. Force based on COG(cneter of gravity) and gain of controller to achieve desired posture for target vessel are obtained by using Riccati matrix equation and pseudo inverse matrix is applied to analyze the relation between the derived force and its towing point. Based on this analysis method, towing force need to move the towed vessel from its initial position to target position can be calculated. The towing method including towing point and direction is also considered on this method. Finally, the relation between towing force and towing point is confirmed from the analysis and the results can be applied to arrangement of tug boats during salvage works.

Structural reliability assessment using an enhanced adaptive Kriging method

  • Vahedi, Jafar;Ghasemi, Mohammad Reza;Miri, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.677-691
    • /
    • 2018
  • Reliability assessment of complex structures using simulation methods is time-consuming. Thus, surrogate models are usually employed to reduce computational cost. AK-MCS is a surrogate-based Active learning method combining Kriging and Monte-Carlo Simulation for structural reliability analysis. This paper proposes three modifications of the AK-MCS method to reduce the number of calls to the performance function. The first modification is related to the definition of an initial Design of Experiments (DoE). In the original AK-MCS method, an initial DoE is created by a random selection of samples among the Monte Carlo population. Therefore, samples in the failure region have fewer chances to be selected, because a small number of samples are usually located in the failure region compared to the safe region. The proposed method in this paper is based on a uniform selection of samples in the predefined domain, so more samples may be selected from the failure region. Another important parameter in the AK-MCS method is the size of the initial DoE. The algorithm may not predict the exact limit state surface with an insufficient number of initial samples. Thus, the second modification of the AK-MCS method is proposed to overcome this problem. The third modification is relevant to the type of regression trend in the AK-MCS method. The original AK-MCS method uses an ordinary Kriging model, so the regression part of Kriging model is an unknown constant value. In this paper, the effect of regression trend in the AK-MCS method is investigated for a benchmark problem, and it is shown that the appropriate choice of regression type could reduce the number of calls to the performance function. A stepwise approach is also presented to select a suitable trend of the Kriging model. The numerical results show the effectiveness of the proposed modifications.

A Study on Robust Matched Field Processing Based on Feature Extraction (특성치 추출 기법에 의한 강인한 정합장 처리에 관한 연구)

  • 황성진;성우제;박정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.83-88
    • /
    • 2001
  • In this paper, matched field processing algorithm robust to environmental mismatches in an ocean waveguide based on feature extraction is summarized. However, in applying this processor to localize a source there are two preliminary issues to be resolved. One is the number of eigenvectors to be extracted and the other is the number of environmental samples to be used. To determine these issues, the relation between the number of dominant modes propagating in a given ocean waveguide and that of eigenvectors to be extracted is analyzed. Then, the analysis results are confirmed by the subspace analysis. This analysis quantifies the similarity between the subspace spanned by the signal vectors and that spanned by the eigenvectors to be extracted. The error index is defined as a relative difference between the location estimated by the current processor and the real source location. It is identified that in the case of extracting the largest eigenvectors equal to the number of dominant modes in a given environment, the processor localizes the source successfully. From the numerical simulations, it is shown that use of at least 30 environmental samples guarantee stable performance of the proposed processor.

  • PDF

A Study on the Deduction of Social Issues Applying Word Embedding: With an Empasis on News Articles related to the Disables (단어 임베딩(Word Embedding) 기법을 적용한 키워드 중심의 사회적 이슈 도출 연구: 장애인 관련 뉴스 기사를 중심으로)

  • Choi, Garam;Choi, Sung-Pil
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.1
    • /
    • pp.231-250
    • /
    • 2018
  • In this paper, we propose a new methodology for extracting and formalizing subjective topics at a specific time using a set of keywords extracted automatically from online news articles. To do this, we first extracted a set of keywords by applying TF-IDF methods selected by a series of comparative experiments on various statistical weighting schemes that can measure the importance of individual words in a large set of texts. In order to effectively calculate the semantic relation between extracted keywords, a set of word embedding vectors was constructed by using about 1,000,000 news articles collected separately. Individual keywords extracted were quantified in the form of numerical vectors and clustered by K-means algorithm. As a result of qualitative in-depth analysis of each keyword cluster finally obtained, we witnessed that most of the clusters were evaluated as appropriate topics with sufficient semantic concentration for us to easily assign labels to them.

Analysis on Tension Response of Mooring Line by Lateral Excitation (수평가진에 의한 계류라인의 장력응답 해석)

  • Jung Dong Ho;Kim Hyeon Ju;Moon Deok Su;Park Han Il;Choi Hak Sun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.185-191
    • /
    • 2004
  • A mooring system can be applied to keep the position of a floating structures. In this study, the structural analysis is carried out to analyze the dynamic characteristics of a mooring line for a floating breakwater. A three-dimensional equations of motion for a submerged chain are derived. Bending stiffness is considered for the necessary restoring force in the regions of zero tension. A fortran program is to be developed by employing finite difference method. In the algorithm, an implicit time integration and Newton-Raphson iteration are adopted. The results of simulation show good agreement in tension response pattern with the experimental results of a reference. The results of this study can contribute for the design of mooring system for a floating breakwater.

  • PDF