• 제목/요약/키워드: Numerical Weather Prediction Model

검색결과 165건 처리시간 0.033초

Improvement of WRF forecast meteorological data by Model Output Statistics using linear, polynomial and scaling regression methods

  • Jabbari, Aida;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.147-147
    • /
    • 2019
  • The Numerical Weather Prediction (NWP) models determine the future state of the weather by forcing current weather conditions into the atmospheric models. The NWP models approximate mathematically the physical dynamics by nonlinear differential equations; however these approximations include uncertainties. The errors of the NWP estimations can be related to the initial and boundary conditions and model parameterization. Development in the meteorological forecast models did not solve the issues related to the inevitable biases. In spite of the efforts to incorporate all sources of uncertainty into the forecast, and regardless of the methodologies applied to generate the forecast ensembles, they are still subject to errors and systematic biases. The statistical post-processing increases the accuracy of the forecast data by decreasing the errors. Error prediction of the NWP models which is updating the NWP model outputs or model output statistics is one of the ways to improve the model forecast. The regression methods (including linear, polynomial and scaling regression) are applied to the present study to improve the real time forecast skill. Such post-processing consists of two main steps. Firstly, regression is built between forecast and measurement, available during a certain training period, and secondly, the regression is applied to new forecasts. In this study, the WRF real-time forecast data, in comparison with the observed data, had systematic biases; the errors related to the NWP model forecasts were reflected in the underestimation of the meteorological data forecast by the WRF model. The promising results will indicate that the post-processing techniques applied in this study improved the meteorological forecast data provided by WRF model. A comparison between various bias correction methods will show the strength and weakness of the each methods.

  • PDF

단시간 다중모델 앙상블 바람 예측 (Wind Prediction with a Short-range Multi-Model Ensemble System)

  • 윤지원;이용희;이희춘;하종철;이희상;장동언
    • 대기
    • /
    • 제17권4호
    • /
    • pp.327-337
    • /
    • 2007
  • In this study, we examined the new ensemble training approach to reduce the systematic error and improve prediction skill of wind by using the Short-range Ensemble prediction system (SENSE), which is the mesoscale multi-model ensemble prediction system. The SENSE has 16 ensemble members based on the MM5, WRF ARW, and WRF NMM. We evaluated the skill of surface wind prediction compared with AWS (Automatic Weather Station) observation during the summer season (June - August, 2006). At first stage, the correction of initial state for each member was performed with respect to the observed values, and the corrected members get the training stage to find out an adaptive weight function, which is formulated by Root Mean Square Vector Error (RMSVE). It was found that the optimal training period was 1-day through the experiments of sensitivity to the training interval. We obtained the weighted ensemble average which reveals smaller errors of the spatial and temporal pattern of wind speed than those of the simple ensemble average.

여름강수량의 단기예측을 위한 Multi-Ensemble GCMs 기반 시공간적 Downscaling 기법 개발 (Development of Multi-Ensemble GCMs Based Spatio-Temporal Downscaling Scheme for Short-term Prediction)

  • 권현한;민영미
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1142-1146
    • /
    • 2009
  • A rainfall simulation and forecasting technique that can generate daily rainfall sequences conditional on multi-model ensemble GCMs is developed and applied to data in Korea for the major rainy season. The GCM forecasts are provided by APEC climate center. A Weather State Based Downscaling Model (WSDM) is used to map teleconnections from ocean-atmosphere data or key state variables from numerical integrations of Ocean-Atmosphere General Circulation Models to simulate daily sequences at multiple rain gauges. The method presented is general and is applied to the wet season which is JJA(June-July-August) data in Korea. The sequences of weather states identified by the EM algorithm are shown to correspond to dominant synoptic-scale features of rainfall generating mechanisms. Application of the methodology to seasonal rainfall forecasts using empirical teleconnections and GCM derived climate forecast are discussed.

  • PDF

자동차용 웨더스트립의 영구변형 예측 (Numerical Prediction of Permanent Deformation of Automotive Weather Strip)

  • 박준철;민병권;오정석;문형일;김헌영
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.121-126
    • /
    • 2010
  • The automotive weather strip has functions of isolating of water, dust, noise and vibration from outside. To achieve good sealing performance, weather strip should be designed to have the high contact force and wide contact area. However, these design causes excessive permanent deformation of weather strip. The causes of permanent deformation is generally explained to be the chemical material detrioration and physical variation and cyclic loading, etc. This paper introduces a numerical method to predict the permanent deformation using the time dependent viscoelastic model which is represented by Prony series in ABAQUS. Uniaxial tension and creep tests were conducted to obtain the material data. And the lab. test for the permanent deformation was accelerated during shorter time, 300 hours. The permanent deformation of weather strip was successfully predicted under the different loading conditions and different section shapes using the suggested numerical process.

Accuracy analysis of flood forecasting of a coupled hydrological and NWP (Numerical Weather Prediction) model

  • Nguyen, Hoang Minh;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.194-194
    • /
    • 2017
  • Flooding is one of the most serious and frequently occurred natural disaster at many regions around the world. Especially, under the climate change impact, it is more and more increasingly trend. To reduce the flood damage, flood forecast and its accuracy analysis are required. This study is conducted to analyze the accuracy of the real-time flood forecasting of a coupled meteo-hydrological model for the Han River basin, South Korea. The LDAPS (Local Data Assimilation and Prediction System) products with the spatial resolution of 1.5km and lead time of 36 hours are extracted and used as inputs for the SURR (Sejong University Rainfall-Runoff) model. Three statistical criteria consisting of CC (Corelation Coefficient), RMSE (Root Mean Square Error) and ME (Model Efficiency) are used to evaluate the performance of this couple. The results are expected that the accuracy of the flood forecasting reduces following the increase of lead time corresponding to the accuracy reduction of LDAPS rainfall. Further study is planed to improve the accuracy of the real-time flood forecasting.

  • PDF

KIAPS 전지구 수치예보모델 시스템에서 SAPHIR 자료동화 효과 (Impact of SAPHIR Data Assimilation in the KIAPS Global Numerical Weather Prediction System)

  • 이시혜;전형욱;송효종
    • 대기
    • /
    • 제28권2호
    • /
    • pp.141-151
    • /
    • 2018
  • The KIAPS global model and data assimilation system were extended to assimilate brightness temperature from the Sondeur $Atmosph{\acute{e}}rique$ du Profil $d^{\prime}Humidit{\acute{e}}$ Intertropicale par $Radiom{\acute{e}}trie$ (SAPHIR) passive microwave water vapor sounder on board the Megha-Tropiques satellite. Quality control procedures were developed to assess the SAPHIR data quality for assimilating clear-sky observations over the ocean, and to characterize observation biases and errors. In the global cycle, additional assimilation of SAPHIR observation shows globally significant benefits for 1.5% reduction of the humidity root-mean-square difference (RMSD) against European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) analysis. The positive forecast impacts for the humidity and temperature in the experiment assimilating SAPHIR were predominant at later lead times between 96- and 168-hour. Even though its spatial coverage is confined to lower latitudes of $30^{\circ}S-30^{\circ}N$ and the observable variable is humidity, the assimilation of SAPHIR has a positive impact on the other variables over the mid-latitude domain. Verification showed a 3% reduction of the humidity RMSD with assimilating SAPHIR, and moreover temperature, zonal wind and surface pressure RMSDs were reduced up to 3%, 5% and 7% near the tropical and mid-latitude regions, respectively.

분포형 수문모형 WRF-Hydro와 기상수치예보모형 GDAPS를 활용한 고해상도 중기 유량 예측 (High-resolution medium-range streamflow prediction using distributed hydrological model WRF-Hydro and numerical weather forecast GDAPS)

  • 김소현;김보미;이가림;이예원;노성진
    • 한국수자원학회논문집
    • /
    • 제57권5호
    • /
    • pp.333-346
    • /
    • 2024
  • 수량과 수질 및 수생태를 동시에 고려한 수자원 관리를 위해서는 신뢰도 높은 중기 유량 예측 기술이 필수적이다. 이를 위해서는 기상자료의 특성에 대한 이해와 더불어, 시공간 해상도가 낮은 기상예측 정보를 고해상도 분포형 수문모형에서 효과적으로 활용하는 기술이 중요하다. 본 연구에서는 분포형 수문모형 WRF-Hydro와 선행시간 288시간까지의 기상정보를 제공하는 Global Data Assimilation and Prediction System (GDAPS)를 활용해 고해상도 중기 유량 예측을 수행하고 적용성을 검토하였다. 이를 위해 대상 유역인 낙동강 지류 금호강 유역에 대해 100 m 공간해상도의 WRF-Hydro모형을 구축하고 기상지상관측자료 Automatic Weather Stations (AWS)& Automated Synoptic Observing Systems (ASOS), 기상수치예보모형 GDAPS, 기상재분석자료 Global Land Data Assimilation System (GLDAS)를 입력자료로 적용한 유량 예측 모의 결과를 비교하였다. 2020~2022년 기간 3개의 강우사상에 대해 유역 평균 누적 강우량을 분석 결과, AWS&ASOS대비 GDAPS는 36%~234%, GLDAS 재분석자료는 80%~153% 범위의 과소 및 과대 산정되었음을 확인하였다. AWS&ASOS입력자료로 한 유량 예측 결과는 KGE, NSE지표가 유역 말단 강창교 지점 기준 0.6이상이었으나, GDAPS 기반 유량 모의는 강우 사상에 따라 KGE 값이 0.871~-0.131로 큰 변동성이 확인되었다. 한편, 첨두 유량 오차는 GDAPS가 GLDAS보다 크거나 비슷했지만, 첨두 홍수 발생시간의 오차는 AWS&ASOS, GDAPS, GLDAS가 각각 평균 3.7시간, 8.4시간, 70.1시간으로, 첨두 발생시간 측면에서는 GDAPS의 오차가 GLDAS보다 적었다. GDAPS를 입력자료로 한 WRF-Hydro 고해상도 중기 유량 예측은 첨두 유량의 불확실성은 크지만, 첨두 유량 발생시점에 대한 정확도는 상대적으로 높아 수자원 시설 운영에 효과적으로 활용될 수 있을 것으로 판단된다.

S-100 기반의 격자형 해양기상정보 데이터 모델 설계에 관한 연구 (A Study on the HDF5 Data Model Design for Gridded Marine Weather Information Based on S-100)

  • 강동훈;엄대용
    • 한국항해항만학회지
    • /
    • 제46권3호
    • /
    • pp.158-167
    • /
    • 2022
  • 국제해사기구의 e-Navigation 전략은 선박에 새로운 기술을 도입하여 더욱 편리하고 안전한 항해를 지원하는 것이다. e-Navigation 전략 이행을 위해 다양한 해양 정보 서비스에서 발생 가능한 요구사항을 수용할 수 있는 공통 데이터 모델이 필요하게 되었고, 최종적으로 국제수로기구의 S-100 표준이 선정되었다. 이 중 해양기상정보를 차세대 전자해도정보시스템에서 표출하기 위한 S-41X 제품표준은 현재 개발이 미 완료된 시점이다. 본 논문은 S-41X 제품표준 중 격자 데이터 기반의 S-413 제품에 대한 데이터 모델을 설계하였다. 또한 격자 데이터 형식을 지원하는 타 S-100 데이터 제품을 참고하여 국내 원시자료인 기상청 수치예보모델 결과를 활용한 제품 인코딩 테스트 단계의 연구를 수행하였다.

중규모 기상 모델을 이용한 안개 사례의 초기장 및 자료동화 민감도 분석 (The Sensitivity Analyses of Initial Condition and Data Assimilation for a Fog Event using the Mesoscale Meteorological Model)

  • 강미선;임윤규;조창범;김규랑;박준상;김백조
    • 한국지구과학회지
    • /
    • 제36권6호
    • /
    • pp.567-579
    • /
    • 2015
  • 중규모 기상 모델을 이용하여 안개와 같은 미세규모 국지현상을 정확히 재현하는 것은 매우 어려운 실정이다. 특히, 수치모델의 초기 입력 자료의 불확도는 수치모델의 예측 정확도에 결정적인 영향을 미치기 때문에 이를 보완하기 위한 자료동화 과정이 요구되어진다. 본 연구에서는 WRF (Weather Research and Forecasting) 모델을 이용하여 낙동강 지역에서 발생한 여름철 안개사례 재현실험을 대상으로 중규모 기상 모델의 한계를 검증하였다. 중규모 기상 모델에서 초기 및 경계장으로 사용되는 KLAPS (Korea Local Analysis and Prediction System)와 LDAPS (Local Data Assimilation and Prediction System) 분석장 자료를 이용하여 수치모델 모의 정확도 민감도 분석을 수행하였다. 또한 AWS (Automatic Weather System) 자료를 이용한 자료동화(Four-Dimensional Data Assimilation)에 의한 수치모델의 정확도 개선 정도를 평가하였다. 초기 및 경계장 민감도 분석 결과에서 LDAPS 자료를 입력 자료로 사용한 경우가 KLAPS 자료 보다 기온과 이슬점온도, 상대습도에서 높은 정확도를 보였고, 풍속은 더 낮은 수준을 나타내었다. 특히, 상대습도에서 LDAPS의 경우는 RMSE (Root Mean Square Error)가 15.9%, KLAPS는 35.6%의 수준을 보여 그 차이가 매우 크게 나타났다. 또한 자료동화를 통하여 기온, 풍속, 상대습도의 RMSE가 각각 $0.3^{\circ}C$, $0.2ms^{-1}$, 2.2% 수준으로 개선되었다.

Comparison of different post-processing techniques in real-time forecast skill improvement

  • Jabbari, Aida;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.150-150
    • /
    • 2018
  • The Numerical Weather Prediction (NWP) models provide information for weather forecasts. The highly nonlinear and complex interactions in the atmosphere are simplified in meteorological models through approximations and parameterization. Therefore, the simplifications may lead to biases and errors in model results. Although the models have improved over time, the biased outputs of these models are still a matter of concern in meteorological and hydrological studies. Thus, bias removal is an essential step prior to using outputs of atmospheric models. The main idea of statistical bias correction methods is to develop a statistical relationship between modeled and observed variables over the same historical period. The Model Output Statistics (MOS) would be desirable to better match the real time forecast data with observation records. Statistical post-processing methods relate model outputs to the observed values at the sites of interest. In this study three methods are used to remove the possible biases of the real-time outputs of the Weather Research and Forecast (WRF) model in Imjin basin (North and South Korea). The post-processing techniques include the Linear Regression (LR), Linear Scaling (LS) and Power Scaling (PS) methods. The MOS techniques used in this study include three main steps: preprocessing of the historical data in training set, development of the equations, and application of the equations for the validation set. The expected results show the accuracy improvement of the real-time forecast data before and after bias correction. The comparison of the different methods will clarify the best method for the purpose of the forecast skill enhancement in a real-time case study.

  • PDF