• 제목/요약/키워드: Numerical Wake Model

검색결과 182건 처리시간 0.022초

설계점 및 탈설계점에서의 원심압축기 회전차 내부 2차유동 (Secondary flows through an impeller of centrifugal compressor at design and off-design conditions)

  • 최영석;강신형
    • 대한기계학회논문집B
    • /
    • 제20권11호
    • /
    • pp.3573-3588
    • /
    • 1996
  • The flow through a centrifugal compressor impeller was calculated using the 3-dimensional Navier-Stokes solution method. A control volume method based on a rotating curvilinear coordinate system was used to solve the time-averaged Navier-Stokes equations, and a standard k-.epsilon. model was used to obtain eddy viscosity. Numerical results and experimental data were compared for the overall performance of the impeller, the pressure distributions along the shroud wall and the detailed flowfields at the design and off-design conditions, which showed good coincidence. The flow through the impeller is complex with the curvature of the streamlines and rotation. The development of secondary flows and the jet-wake flow characteristics, which is the main source of flow loss, was discussed. Calculation results show quite different patterns as the flow rate changes.

직사각형 평판 날개의 날개짓과 비틀림 운동에 대한 비정상 VLM 공력 해석 (Aerodynamic Analysis of a Rectangular Wing in Flapping and Twisting Motion using Unsteady VLM)

  • 김우진;김학봉
    • 한국항공우주학회지
    • /
    • 제34권3호
    • /
    • pp.14-21
    • /
    • 2006
  • 직사각형 평판날개의 날개짓과 비틀림 운동을 해석하기 위하여 비정상 와류격자법(VLM)을 이용하였다. 단순 상하 및 피칭 운동하는 날개에 대한 해석결과를 실험 및 다른 수치해석 결과들과 비교하여 복잡한 날개짓 비행을 모사하는데 본 방법을 사용할 수 있음을 보였다. 날개짓 각 진폭이 $20^{\circ}$인 경우에 여러 가지 비틀림 각과 무차원 주파수 변화에 대하여 직사각형 평판 날개의 양력, 추력 및 추진효율을 계산하였다. 계산 결과를 분석하여 주기적으로 변하는 비틀림이 날개짓 날개의 공력 특성에 미치는 영향을 살펴보았다.

전진 비행하는 탠덤로터의 간섭효과에 대한 수치적 연구 (Numerical Investigation on Interference Effects of Tandem Rotor in Forward Flight)

  • 이재원;오세종;이관중;김덕관
    • 한국항공우주학회지
    • /
    • 제37권7호
    • /
    • pp.615-626
    • /
    • 2009
  • 본 논문에서는 전진 비행하는 탠덤로터의 로터 겹침에 의한 간섭효과에 대해 연구하였다. 기 개발된 시간전진 자유후류 모델이 고려된 비정상 패널 코드는 후류와 깃(blade)이 아주 근접한 경우에 불안정성이 발생하였다. 이를 제거하기 위해서 장속도기법을 적용하여 코드를 개선하였다. 개선된 코드를 이용하여 전진 비행하는 탠덤로터의 상호작용에 가장 큰 영향을 미치는 인자인 로터 간격과 전진비에 따른 파라메타 연구를 수행하였다. 공력성능의 비교를 통해 겹침유도동력계수는 일정한 전진비 이후에는 로터 사이의 수평 거리의 영향은 거의 받지 않으며, 수직 거리의 제곱에 반비례하는 것을 알 수 있었다. 또한 전진비가 증가함에 따라 겹침유도동력계수는 증가하다가 감소하는 경향을 보였다.

측류유동을 고려한 실린더 주위의 캐비테이션 유동 현상 해석 (SIMULATION OF CAVITATING FLOW PAST CYLINDERS WITH STRONG SIDE FLOW)

  • 이병우;박원규;이건철
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.149-154
    • /
    • 2009
  • The cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has focused on the simulation of cavitating flow past cylinders with strong side flow. The governing equation is the Navier-Stokes equation based on homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved liquid and vapor phase, separately. An implicit dual time and preconditioning method are employed for computational analysis. The results from the present solver have been in a fairly good agreement with the experimental data and other numerical results. After the code validation the strong side flow was applied to include the wake flow effect of the submarine.

  • PDF

CALMET 및 ENVI-MET를 이용한 산업단지 입지에 따른 국지 바람장 분석 (An Analysis of Local Wind Field by Location of Industrial Complex using CALMET and ENVI-MET)

  • 송동웅
    • 환경영향평가
    • /
    • 제21권3호
    • /
    • pp.417-429
    • /
    • 2012
  • In this study, a diagnostic wind model, CALMET and a micrometeorological numerical model, ENVI-MET were used to analyze the wind field in and out of the site designated for the industrial complex around Buron-myeon, Wonju, Gangwon-do. The results of modeling with CALMET showed that the air flow in industrial complex was little affected by the surrounding terrain. And the result of wind field analysis with ENVI-MET showed there are turbulent air flows such as cavity and wake around structures in the industrial complex, which can cause high-air pollution. Therefore, it is necessary to design the industrial complex considering the wind path according to wind directions.

프로펠러와 허브 보오텍스 조절장치 상호작용 CFD 해석 (CFD Analysis of Marine Propeller-Hub Vortex Control Device Interaction)

  • 박현정;김기섭;서성부;박일룡
    • 대한조선학회논문집
    • /
    • 제53권4호
    • /
    • pp.266-274
    • /
    • 2016
  • Many researchers have been trying to improve the propulsion efficiency of a propeller. In this study, the numerical analysis is carried out for the POW(Propeller Open Water test) performance of a propeller equipped with an energy saving device called PHVC(Propeller Hub Vortex Control). PHVC is aimed to control the propeller hub vortex behind the propeller so that the rotational kinetic energy loss can be reduced. The unsteady Reynolds Averaged Navier-Stokes(URANS) equations are assumed as the governing flow equations and are solved by using a commercial CFD(Computational Fluid Dynamics) software, where SST k-ω model is selected for turbulence closure. The computed characteristic values, thrust, torque and propulsion efficiency coefficients for the target propeller with and without PHVC and the local flows in the propeller wake region are validated by the model test results of KRISO LCT(Large Cavitation Tunnel). It is concluded from the present numerical results that CFD can be a good promising method in the assessment of the hydrodynamic performance of PHVC in the design stage.

2차원 쐐기형 몰수체의 비정상 공동 와류에 대한 수치해석 (Numerical Analysis of Unsteady Cavitating Vortex around Two-dimensional Wedge-shaped Submerged Body)

  • 김지혜;정소원;안병권;박철수;김건도
    • 한국해양공학회지
    • /
    • 제32권1호
    • /
    • pp.36-42
    • /
    • 2018
  • Unlike a slender body, vortices are shed off alternately in the wake of a blunt body. In the case of liquid flows, when the pressure falls below the vapor pressure, cavitation occurs in the vortex core and affects the formation of the vortex street. This phenomenon is of major importance in many practical cases because the alternate shedding of vortices creates imbalanced forces on the body. Hence, it is very important to determine the shedding frequency of cavitating vortices. In this paper, the unsteady cavitating flow around a two-dimensional wedge-shaped submerged body was simulated using the commercial code STAR-CCM+. A numerical investigation of the structure of cavitating vortices was performed for a model with an apex angle of $20^{\circ}C$. The results were validated by comparing them with experimental measurements carried out at a cavitation tunnel of Chungnam National University (CNU-CT). It was found that the shedding frequency of the vortex increased by up to 18%, which was strongly affected by the development of cavitation.

Numerical study on Reynolds number effects on the aerodynamic characteristics of a twin-box girder

  • Laima, Shujin;Wu, Buchen;Jiang, Chao;Chen, Wenli;Li, Hui
    • Wind and Structures
    • /
    • 제28권5호
    • /
    • pp.285-298
    • /
    • 2019
  • For super long-span bridges, the aerodynamic forces induced by the flow passing the box girder should be considered carefully. And the Reynolds number sensitively of aerodynamic characteristics is one of considerable issue. In the study, a numerical study on the Reynolds number sensitivity of aerodynamic characteristic (flow pattern, pressure distribution and aerodynamic forces) of a twin-box girder were carried out using large eddy simulation (LES) with the dynamic Smagorinsky-Lilly subgrid model. The results show that the aerodynamic characteristics have strong correlation with the Reynolds number. At the leading edge, the flow experiences attachment, departure, and reattachment stages accompanying by the laminar transition into turbulence, causing pressure plateaus to form on the surface, and the pressure plateaus gradually shrinks. Around the gap, attributing that the flow experiences stages of laminar cavity flow, the wake with alternate shedding vortices, and turbulent cavity flow in sequence with an increase in the Reynolds number, the pressures around the gap vary greatly with the Reynold number. At the trailing edge, the pressure gradually recovers as the flow transits to turbulence (the flow undergoes wake instability, shear layer transition-reattachment station), In addition, at relative high Reynolds numbers, the drag force almost does not change, however, the lift force coefficient gradually decreases with an increase in Reynolds number.

Numerical simulation of 3-D probabilistic trajectory of plate-type wind-borne debris

  • Huang, Peng;Wang, Feng;Fu, Anmin;Gu, Ming
    • Wind and Structures
    • /
    • 제22권1호
    • /
    • pp.17-41
    • /
    • 2016
  • To address the uncertainty of the flight trajectories caused by the turbulence and gustiness of the wind field over the roof and in the wake of a building, a 3-D probabilistic trajectory model of flat-type wind-borne debris is developed in this study. The core of this methodology is a 6 degree-of-freedom deterministic model, derived from the governing equations of motion of the debris, and a Monte Carlo simulation engine used to account for the uncertainty resulting from vertical and lateral gust wind velocity components. The influence of several parameters, including initial wind speed, time step, gust sampling frequency, number of Monte Carlo simulations, and the extreme gust factor, on the accuracy of the proposed model is examined. For the purpose of validation and calibration, the simulated results from the 3-D probabilistic trajectory model are compared against the available wind tunnel test data. Results show that the maximum relative error between the simulated and wind tunnel test results of the average longitudinal position is about 20%, implying that the probabilistic model provides a reliable and effective means to predict the 3-D flight of the plate-type wind-borne debris.

Numerical Analysis of Three Dimensional Supersonic Flow around Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Kim Jong-Rok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.311-314
    • /
    • 2006
  • The supersonic flow around tandem cavities was investigated by three- dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes(RANS) equation with the $\kappa-\omega$ thrbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split using van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge-Kutta method. The aspect ratio of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two-dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the fire cavity flow cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

  • PDF