• Title/Summary/Keyword: Numerical Test

Search Result 4,771, Processing Time 0.031 seconds

Short Circuit Test of Power Transformer for Evaluation of Numerical Analysis (전산해석 검증을 위한 전력용 변압기의 단락강도 측정)

  • Oh, Y.H.;Song, K.D.;Sun, C.H.;Kim, S.C.;Woo, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.793-795
    • /
    • 2002
  • This study shows method of measuring mechanical stresses during short circuit test, to evaluate numerical analysis of short circuit force. As test model, 400kVA transformers are used, to acquire short circuit force acceleration sensors used. Weak region of winding is found through short circuit test, and verification data of numerical calculation is obtained.

  • PDF

Consideration on Effects of Mesh Systems on True Stress-Strain Acquisition Method over a Large Range of Strains by Tensile Test and Finite Element Method (유한요소망이 인장시험과 유한요소법을 이용한 진응력-진변형곡선 획득 기법에 미치는 영향에 관한 고찰)

  • Kim, Hong-Tae;Eom, Jae-Gun;Choi, In-Su;Lee, Min-Cheol;Joun, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.808-813
    • /
    • 2007
  • We present the numerical characteristics of a new true stress-strain curve acquisition method over a large range of strains by the tensile test and a finite element method through comparing the results obtained by various finite element mesh systems. The method is introduced in detail. The effects of the finite element mesh systems on the results are investigated to show its numerical characteristics of the new method. It is shown that the method is quite robust, implying that it can be used as a special function of the tensile test machines.

  • PDF

A Study on the Mechanical Characteristics by the Change of Bevel Angle of Welding Joint During PWHT (溶接이음부 形狀變化에 따른 後熱處理時의 力學的 特性에 關한 硏究)

  • 방한서;강성원;김기성;김종명;노찬승
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.64-71
    • /
    • 1997
  • In order to define the effects on shapes of welding joint, during Post Welding Heat Treatment (PWHT), we have carried out numerical analysis on the several test pieces by using computer program which was based on thermal-elasto-plastic-creep theories for the study. And then, welding residual stresses after PWHT were measured same test-pieces to compare with the results of numerical analysis. The main results obtained from this study is as follows: 1) The distribution modes of welding residual stresses are same on the all test pieces after and during PWHT by the both sides (measurement and numerical analysis). 2) The mechanical difference for change the thickness of plate and bevel angle are not appeared. 3) In a mechanical point of view (like material quality test, welding deformation etc.), manimum bevel angle (40$^{\circ}$.) is more suitable than maximum bevel angle (70$^{\circ}$).

  • PDF

An Dredging Depth Calculation of a Pile Under Lateral Loading Based on Model Test (모형실험을 통한 횡하중을 받는 말뚝의 준설깊이 산정)

  • Yoo, Chan-Ho;Lee, Jung-Jae;Kim, Seung-Wook;Chung, Jong-Min;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1094-1103
    • /
    • 2010
  • The safety of pile foundation is getting declined when the pile foundation acting on lateral load is exposed by dredging. So appropriate reinforcement is needed for stability secure. Thus, in this study, the stability variation and reinforcement range caused by dredging is estimated on the basis of down scale test. The scale effect is determined by real scale numerical analysis. the behavior of pile by dredging stages is estimated by load control type. The credibility is verified through the comparison between down scale model test and numerical analysis.

  • PDF

A Numerical Method for Strength Analysis of Composite Joints (복합재 체결부 강도해석을 위한 새로운 수치해석방법)

  • Kang BongSoo;Jung JaeWoo;Kweon Jin-Hwe;Choi Jin-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.202-205
    • /
    • 2004
  • A numerical method is presented to determine the characteristic lengths for the failure analysis of composite joints without characteristic length tests. In the conventional methods, compressive characteristic length was determined from the result of a combined bearing test and finite element analysis. The present study, however, shows that the same compressive characteristic length can be obtained by numerical calculation without the bearing test. A new method to define the tensile characteristic length is also introduced so that the tensile characteristic length is numerically determined without the tensile test. Failure loads based on the numerically calculated characteristic lengths are validated by the test results for composite joints

  • PDF

Evaluation on Ground Characteristics of Weathered Granite Masses by Pressuremeter Test (공내재하시험에 의한 화강 풍화암의 지반 특성 평가)

  • Lee, Kwang-Hee;Bae, Kyung-Tae;Chang, Seo-Man;Lee, Chong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.831-838
    • /
    • 2004
  • To study on mechanical characteristics of weathered granite masses are difficult because of undisturbanced sampling and in-situ test. Generally, pressuremeter test is widely used to investigate the behavior of weathered rock masses. However, it has many problems to get a limit pressure because of cavity collapse, membrane damage, ete. This study aims to evaluate the mechanical characteristics of weathered granite masses using in-situ pressuremeter test and numerical analysis depending on the ratio of length and diameter of the membrane(L/D=5, 8, 10, 15, 20). Test results and data are shown that strength parameters are reduced exponentially varing weathering degree, and numerical analysis results are approximately coincided with the test results. And the ratio of length and diameter of the membrane arc not affected the parameters such as modulus of pressuremeter, shear modulus, etc. But limit pressure is increased decreasing membrane length based on numerical analysis. On the other hand, increasing the membrane length, yield pressure is decreased and plastic radius is increased in the case of same weathering degree.

  • PDF

A Study on the Bending Performance of Structural Size Lumbers Using the ANSYS (ANSYS를 이용한 실대재의 휨특성에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.4
    • /
    • pp.323-329
    • /
    • 2011
  • In our country, domestic species can not be used as a structural member because we have not yet grading system. So, to utilize as a basic data of grading system, bending test and numerical modelling on structural member were conducted in this study. 35 of Douglas-fir, 2" ${\times}$ 6", span 2.4 m were tested for the bending properties, and Ansys software was used to analyze the numerical modelling on the structural members. The data of knots were inspected and applied in numerical modelling. To obtain the accuracy of analysis, nonlinear numerical analysis was carried out instead of linear numerical analysis. Ultimate load had a wide range from 4883N to 11,738 N, and maximum deformation also had a range from 26 mm to 68 mm. Average of ultimate load was 8,616 N, and that of maximum deformation was 48 mm. The distinctive features of failure types were simple tension type and cross-grain tension type. Ulitmate load and maximum deformation from numerical modelling were 7,504 N and 37 mm. The numerical modelling drawn by this study is available to all species, and reasonable prediction on the bending performance is possible with only some material properties.

  • PDF

Behavior of Dry-stone Segmental Retaining Wall Using Physical Modeling and Numerical Simulation (모형시험과 수치해석을 이용한 조적식 석축옹벽의 거동 특성)

  • Kim, Seong-Su;Mok, Young-Jin;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.25-36
    • /
    • 2011
  • The behavior of the dry-stone masonry retaining structure has been investigated via physical model test and numerical simulation. In the model test, the digital image analysis using PIV technique was employed to measure horizontal displacements in the backfill soils and retaining blocks. For finite element numerical analyses, the commercial code, ABAQUS, was used. The horizontal displacements observed in the model test showed that the development of the failure surface is progressive. Numerical results showed that in most cases horizontal earth pressure is distributed similarly to a conventional Rankine’s distribution. However, lower values of the internal friction angle of the backfill soils and interface friction angle in the front blocks produce irregularly nonlinear distribution of the horizontal earth pressure.

Numerical Analysis for High-rise Building Foundation and Further Investigations on Piled Raft Design

  • Won, Jinoh;Lee, Jin Hyung;Cho, Chunwhan
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.4
    • /
    • pp.271-281
    • /
    • 2015
  • This paper introduces detailed three-dimensional numerical analyses on a bored pile foundation for a high-rise building. A static load test was performed on a test pile and a numerical model of a single pile, which was calibrated by comparing it with the test result. The detailed numerical analysis was then conducted on the entire high-rise building foundation. Further study focused on soil pressures under the base slab of a piled raft foundation. Total seven cases with different pile numbers and raft-soil contact conditions were investigated. The design criteria of a foundation, especially settlement requirement were satisfied even for the cases with fewer piles under considerable soil pressure beneath the base slab. The bending moment for the structural design of the base slab was reduced by incorporating soil pressures beneath the base slab along with bored piles. Through the comparative studies, it was found that a more efficient design can be achieved by considering the soil pressure beneath the slab.

Application of numerical models to determine wind uplift ratings of roofs

  • Baskaran, A.;Borujerdi, J.
    • Wind and Structures
    • /
    • v.4 no.3
    • /
    • pp.213-226
    • /
    • 2001
  • Wind uplift rating of roofing systems is based on standardised test methods. Roof specimens are placed in an apparatus with specified table size (length and width) then subjected to the required wind load cycle. Currently, there is no consensus on the table size to be used by these testing protocols in spite of the fact that a table size plays a significant role in evaluating the performance. This paper presents a study with the objective to investigate the impact of table size on the performance of roofing systems. To achieve this purpose, extensive numerical experiments using the finite element method have been conducted to investigate the performance of roofing systems subjected to wind uplift pressures. Numerical results were compared with results obtained from experimental work to benchmark the numerical modeling. Required table size and curves for the determinations of appropriate correction factors are suggested. This has been completed for various test configurations with thermoplastic waterproofing membranes. Development of correction factors for assemblies with thermoset and modified bituminous membranes are in progress. Generalization of the correction factors and its usage for wind uplift rating of roofs will be the focus of a future paper.