• Title/Summary/Keyword: Numerical Model

Search Result 15,771, Processing Time 0.049 seconds

Evaluation of Feed Value of IRG in Middle Region Using UAV

  • Na, Sang-Il;Kim, Young-Jin;Park, Chan-Won;So, Kyu-Ho;Park, Jae-Moon;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.391-400
    • /
    • 2017
  • Italian ryegrass (IRG) is one of the fastest growing grasses available to farmers. It offers rapid establishment and starts growing early in the following spring and has fast regrowth after defoliation. So, IRG can be utilized as the dominant/single species of grass used in a farming system, or to play a role as a large producing pasture and sacrificial paddock. The objective of this study was to develop the use of unmanned aerial vehicle (UAV) for the evaluation of feed value of IRG. For this study, UAV imagery was taken on the Nonsan regions two times during the IRG growing season. We analyzed the relationships between $NDVI_{UAV}$ and feed value parameters such as fresh matter yield, dry matter yield, acid detergent fiber (ADF), neutral detergent fiber (NDF), total digestible nutrient (TDN) and crude protein at the season of harvest. Correlation analysis between $NDVI_{UAV}$ and feed value parameters of IRG revealed that $NDVI_{UAV}$ correlated well with crude protein (r = 0.745), and fresh matter yield (r = 0.655). According to the relationship, the variation of $NDVI_{UAV}$ was significant to interpret feed value parameters of IRG. Eight different regression models such as Linear, Logarithmic, Inverse, Quadratic, Cubic, Power, S, and Exponential model were used to estimate IRG feed value parameters. The S and exponential model provided more accurate results to predict fresh matter yield and crude protein than other models based on coefficient of determination, p- and F-value. The spatial distribution map of feed values in IRG plot was in strong agreement with the field measurements in terms of geographical variation and relative numerical values when $NDVI_{UAV}$ was applied to regression equation. These lead to the result that the characteristics of variations in feed value of IRG according to $NDVI_{UAV}$ were well reflected in the model.

Numerical Simulation of Cavitating Flows on a Foil by Using Bubble Size Distribution Model

  • Ito, Yutaka;Nagasaki, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.216-227
    • /
    • 2004
  • A new cavitating model by using bubble size distribution based on bubbles-mass has been proposed. Both liquid and vapor phases are treated with Eulerian framework as a mixture containing minute cavitating bubbles. In addition vapor phase consists of various sizes of vapor bubbles, which are distributed to classes based on their mass. The bubble number-density for each class was solved by considering the change of the bubble-mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method, the bubble-mass is treated as an independent variable, and the other dependent variables are solved in spatial coordinates and bubble-mass coordinate. Firstly, we employed this method to calculate bubble nucleation and growth in stationary super-heated liquid nitrogen, and bubble collapse in stationary sub-cooled one. In the case of bubble growth in super-heated liquid, bubble number-density of the smallest class based on its mass is increased due to the nucleation. These new bubbles grow with time, and the bubbles shift to larger class. Therefore void fraction of each class is increased due to the growth in the whole class. On the other hand, in the case of bubble collapse in sub-cooled liquid, the existing bubbles are contracted, and then they shift to smaller class. It finally becomes extinct at the smallest one. Secondly, the present method is applied to a cavitating flow around NACA00l5 foil. Liquid nitrogen and liquid oxygen are employed as working fluids. Cavitation number, $\sigma$, is fixed at 0.15, inlet velocities are changed at 5, 10, 20 and 50m/s. Inlet temperatures are 90K in case of liquid nitrogen, and 90K and 1l0K in case of liquid oxygen. 110K of oxygen is corresponding to the 90K of nitrogen because of the same relative temperature to the critical one, $T_{r}$=$T/T_c^{+}$. Cavitating flow around the NACA0015 foils was properly analyzed by using bubble size distribution. Finally, the method is applied to a cavitating flow in an inducer of the LE-7A hydrogen turbo-pump. This inducer has 3 spiral foils. However, for simplicity, 2D calculation was carried out in an unrolled channel at 0.9R cross-section. The channel moves against the fluid at a peripheral velocity corresponding to the inducer revolutions. Total inlet pressure, $Pt_{in}$, is set at l00KPa, because cavitation is not generated at a design point, $Pt_{in}$=260KPa. The bubbles occur upstream of the foils and collapse between them. Cavitating flow in the inducer was successfully predicted by using the bubble size distribution.

  • PDF

Summer Water Quality Management by Ecological Modelling in Ulsan Bay (생태계 모델을 이용한 울산만의 하계 수질관리)

  • Park, Sung-Eun;Hong, Sok-Jin;Lee, Won-Chan;Jung, Rae-Hong;Cho, Yoon-Sik;Kim, Hyung-Chul;Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Numerical study on coastal water quality management was conducted to examine the response of summer water quality to the flow into the sea of land based pollution load in Ulsan Bay, Korea The abatement of pollution load. from point sources of land was estimated on the basis of Korean coastal water quality standard using an ecosystem model. The results of the ecological model simulation showed that COD values in the inner part of the bay were greater than 280mg/L, and exceeded the grade III limit of Korean coastal water quality standard 30% of all land based pollution loads or organic and inorganic material loads from point sources should be cut down to keep the COD levels below 2mg/L. As environmental carrying capacity was estimated to be 7,193kgCOD/day to keep the COD levels below 2mg/L in Ulsan Bay, 3,083kgCOD/day of land based organic loads should be reduced. The phytoplankton blooms have occurred in the Teahwa river mouth or estuary repetitively, so it is important to control land based nutrients loads for removal of autochthonous organic loads around Ulsan Bay.

Behaviors of Pile Croup Installed Near Inclined Ground (경사지반에 인접하여 설치된 무리말뚝의 거동연구)

  • Chae, Kwang-Seok;Ugai, Keizo;Yoon, Gil-Lim
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.53-64
    • /
    • 2003
  • Many transmission towers, high-rise buildings and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large-diameters with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite element method (FEM) of model tests of a laterally loaded short pile located near slopes, respectively. In this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30$^{\circ}$ slopes and horizontal ground were analyzed by the 3-D FE analyses. The pile was assumed to be linearly elastic. The sand was assumed to have non-associative characteristics, following the MC-DP model. The failure criterion is governed by the Mohr-Coulomb equation and the plastic potential is given by the Drucker-Prager equation. The main purpose of this paper is the validation of the 3-D elasto-plastic FEM by comparisons with the experimental data.

Analysis of Permanent Deformation under Repetitive Load Based on Degraded Secant Modulus (할선탄성계수를 이용한 반복하중 하 지반의 영구변형 해석)

  • Ahn, Jaehun;Oh, Jeongho;Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.15-21
    • /
    • 2013
  • The analysis of long-term performance of pavement sections under wheel loads is normally conducted in two separated steps. First the resilient behavior of the pavement is calculated assuming the pavement is a layered or discrete elastic medium, and then the permanent deformation is evaluated based on empirical permanent displacement equations. Material properties required in both steps can be obtained from cyclic triaxial tests, in other words, resilient and permanent deformation tests. While this analytical approach is simple and convenient, it does not consider the modulus degradation caused by cyclic loads, and some types of reinforcements such as geosynthetic cannot be modeled in this type of analysis. A model for degraded secant modulus is proposed and suggested to be used for the analysis of permanent behavior of unpaved roadway sections. The parameter for suggested model can be obtained from cyclic triaxial tests, regular practice in pavement engineering. Examples to estimate the model parameters are presented based on both laboratory permanent deformation test and large-scale plate load test.

DEA Models and Application Procedure for Performance Evaluation on Governmental Funding Projects for IT Small and Medium-sized Enterprises with Exogenously Fixed Variables of Corporate Competency (기업역량을 고려한 외생고정변수를 갖는 IT중소기업 정부자금지원정책 성과평가를 위한 DEA모형 및 활용절차)

  • Park, Sung-Min;Kim, Heon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5B
    • /
    • pp.364-378
    • /
    • 2008
  • Data Envelopment Analysis(DEA) models can be used for performance evaluation on governmental funding projects for IT small and medium-sized enterprises associated with multiple-outputs/multiple-inputs. In order to enhance the accuracy of DEA efficiency scores, DEA models with exogenously fixed variables are required where the corporate competency is taken into account. Additionally, it is necessary to use multiple DEA basic as well as extended models so as to relax the restriction on the performance evaluation to relying on a single DEA model. In this study; 1)a DEA data structure is designed including exogenously fixed variables representing corporate asset, revenue and the number of employees at the point in time that the governmental funding project concerned is initiated; 2)DEA basic as well as extended models are established according to the DEA data structure presented abovementioned; and 3)a case study is illustrated with an empirical testbed dataset. As for the DEA basic models, CCR, BCC, Super-efficiency model are adopted. The DEA extended models are developed based on the models associated with noncontrollable and nondiscretionary variables. In the case study, it is explained a comparison of DEA models and also major numerical outcomes such as efficiency scores, ranks derived from each DEA model are integrated using Analytic Hierarchy Process(AHP) weights. Performance significance with DEA efficiency scores between technical categories are tested based not only on parametric but also nonparametric single-factor analysis of variance method.

A Robust Hand Recognition Method to Variations in Lighting (조명 변화에 안정적인 손 형태 인지 기술)

  • Choi, Yoo-Joo;Lee, Je-Sung;You, Hyo-Sun;Lee, Jung-Won;Cho, We-Duke
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.25-36
    • /
    • 2008
  • In this paper, we present a robust hand recognition approach to sudden illumination changes. The proposed approach constructs a background model with respect to hue and hue gradient in HSI color space and extracts a foreground hand region from an input image using the background subtraction method. Eighteen features are defined for a hand pose and multi-class SVM(Support Vector Machine) approach is applied to learn and classify hand poses based on eighteen features. The proposed approach robustly extracts the contour of a hand with variations in illumination by applying the hue gradient into the background subtraction. A hand pose is defined by two Eigen values which are normalized by the size of OBB(Object-Oriented Bounding Box), and sixteen feature values which represent the number of hand contour points included in each subrange of OBB. We compared the RGB-based background subtraction, hue-based background subtraction and the proposed approach with sudden illumination changes and proved the robustness of the proposed approach. In the experiment, we built a hand pose training model from 2,700 sample hand images of six subjects which represent nine numerical numbers from one to nine. Our implementation result shows 92.6% of successful recognition rate for 1,620 hand images with various lighting condition using the training model.

DEVELOPMENT OF THREE-DIMENSIONAL DYNAMIC ANALYSIS MODEL HIGH SPEED TRAIN-BRIDGE INTERACTION (철도 차량 - 교량 상호작용에 의한 3차원 동적 해석 모델 개발)

  • Dinh, Van Nguyen;Kim, Ki Du;Shim, Jae Soo;Choi, Eun Soo;Songsak, Suthasupradit
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.151-163
    • /
    • 2008
  • A formulation of three-dimensional model of articulated train-b ridge dynamic interaction has been made for the Korean eXpress Train (KTX). Semi-periodic profiles of rail irregularities consisting of elevation, alignment, cross and gauge irregularities have also been proposed using FRA maximum tolerable rail deviations. The effects of rail joints and sleeper step were also included. The resulting system matrices of train and bridge are very spare, and thus, are stored in one-dimensional arrays, yielding a time-efficient solution. A numerical algorithm for computing bridge-train response including an iterative scheme is also formulated. A program simulating train-bridge interaction and solving this problem using the new algorithm is implemented as new modules for the f inite element analysis software named XFINAS. Computed results using the new program are then checked by that of the validated 2-D bridge-train interaction model. This new 3D analysis provides more detailed train responses such as swaying, bouncing, rolling, pitching and yawing accelerations, which are useful inevaluating passenger riding comfort. Train operation safety and derailment could also be directly investigated by relative wheel displacements computed from this program.

Numerical Analysis of Grout Flow and Injection Pressure Affected by Joint Roughness and Aperture (절리 거칠기와 간극 변화에 따른 그라우트 유동과 주입압에 관한 수치해석적 연구)

  • Jeon, Ki-Hwan;Ryu, Dong-Woo;Kim, Hyung-Mok;Park, Eui-Seob;Song, Jae-Jun
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.82-91
    • /
    • 2010
  • Grouting technology is one of the ground improvement methods used in water controlling and reinforcement of rock mass in underground structure construction. It is necessarily required to find out the characteristics of grout flow through discontinuities in a rock mass for an adequate grout design and performance assessment. Laminar flow is not always applicable in simulating a grout flow in a rock mass, since the rock joints usually have apertures at a micro-scale and the flow through these joints is affected by the joint roughness and the velocity profile of the flow changes partially near the roughness. Thus, the influence of joint roughness and aperture on the grout flow in rough rock joint was numerically investigated in this study. The commercial computational fluid dynamics code, FLUENT, was applied for this purpose. The computed results by embedded Herschel-Bulkley model and VOF (volume of fluid) model, which are applicable to simulate grout flow in a narrow rock joint that is filled with air and water, were well compared with that of analytical results and previously published laboratory test for the verification. The injection pressure required to keep constant injection rate of grout was calculated in a variety of Joint Roughness Coefficient (JRC) and aperture conditions, and the effect of joint roughness and aperture on grout flow were quantified.

The Study on the Estimation of Optimal Debt Ratio in Korean Agricultural Corporations (한국 농업법인의 적정부채비율 추정을 위한 실증연구)

  • Kim, Woo-Seok;Seo, Beom;Im, In-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.135-142
    • /
    • 2017
  • This study employs an analytical mathematical model to estimate the optimal debt ratio of Korean agricultural corporations, more sensitive to the government debt ratio policy compared to other industries, and the estimation of the optimal debt ratio based on objective data. The analytical model utilizes the equation for ROE, with the debt ratio as an independent variable, and related parameters include ROS, TAT, and NFCL. Regarding the NFCL, the optimal debt ratio standard is defined as the debt ratio that maximizes the ROE by analytical procedures such as adding an equation concerning the debt ratio and a linearity relationship to the analytical model, and from these equations, a quadratic equation with the debt ratio as an independent variable describes the ROE. This methodemploys fourteen years of corporate data. Results show that 138% of debt ratio is the optimal debt ratio to increase the ROE of the corporations, which implies that the existing debt ratio of Korean agricultural corporations is higher than optimal. Consequently, it is required for authorities to change future debt ratio policies in view that the purpose of debt ratio management is to maintain safety and increase profitability.Management should emphasize characteristics of the specific industry rather than standardized judgements based on numerical indexes.