• Title/Summary/Keyword: Number of blade

Search Result 491, Processing Time 0.041 seconds

Compressor BPF noise reduction for an automotive turbocharger (차량용 터보차져의 컴프레서 BPF 소음 저감)

  • Park, Ho-Il;Eom, Sang-Bong;Seo, Ju-Bong;Lee, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.851-856
    • /
    • 2012
  • Automotive turbochargers have become common in gasoline engines as well as diesel engines. They are excellent devices to effectively increase fuel efficiency and power of the engines, but they unfortunately cause several noise problems. The noises are classified into mechanical noises induced from movement of a rotating shaft and aerodynamic noises by air flow in turbochargers. The mechanical noises are whine and howling noises, and the aerodynamic noises are BPF (blade-passing frequency), pulsation, surge, some special frequency noises. These noises are bothering passengers because their levels are higher or their frequencies are clearly separated from engine or vehicle noises. The noise investigated in this paper is a BPF noise induced by compressor wheels, whose frequency is the multiplication of the number of compressor wheel blades and its rotational speed. The noise is strongly dependent upon the geometry of wheels and the number of blades. This study tried to apply a groove close to the inlet side of compressor wheels in order to reduce the BPF noise. The groove has successfully reduced the noise of narrow band frequency of a turbocharger. It shows that the groove could reduce the wide band frequency noise, the compressor BPF noise with a best shape of the groove.

  • PDF

Prediction of Erosion Rate in Passages of a Turbine Cascade with Two-Phase flow (터빈익렬 유로에서 2상 유동에 따른 삭마량 예측)

  • Yu, Man Sun;Kim, Wan Sik;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.301-308
    • /
    • 1999
  • The present study investigates numerically particle laden flow through compressor cascades and a rocket nozzle. Engines are affected by various particles which are suspending in the atmosphere. Especially in the case of aircraft aviating in volcanic, industrial and desert region including many particles, each components of engine system are damaged severely. That damage modes are erosion of compressor blading and rotor path components, partial or total blockage of cooling passage and engine control system degradation. Numerical prediction and experimental data, erosion rates are predicted for two materials - ceramic, soft metal - on compressor blade surface. Aluminum oxide ($Al_2O_3$) Particles included in solid rocket propelant make ablative the rocket motor nozzle and imped the expansion processes of propulsion. By the definition of particle deposition efficiency, characteristics of particles impaction are considered quantitatively Stoke number is defined over the various particle sizes and particle trajectories are treated by Lagrangian approach. Particle stability is considered by definition of Weber number in rocket nozzle and particle breakup and evaporation is simulated in a rocket nozzle.

  • PDF

Studies on the Productivity of Individual Leaf Blade of Paddy Rice (수도의엽신별 생육효과에 관한 연구)

  • Dong-Sam Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.18
    • /
    • pp.1-27
    • /
    • 1975
  • Experiment I: A field experiment was conducted in an attempt to find the effect of top-dressing at heading time in different levels of nitrogen application and of different positioned leaf blades formed by the treatment of leaf defoliation at heading time on the ripening and the yield of rice. The results obtained are as follows: 1. Average number of ears per hill and average number of grains per ear in different levels of nitrogen application were increased as the amount of nitrogen applied was increased. while the rate of ripened grains the yield of rough rice and the weight of 1, 000 kernels of brown rice were decreased respectively as the amount of nitrogen applied was increased. 2. The rate of ripened grains and the weight of 1.000 kernels of brown rice in different levels of nitrogen, top-dressing at heading time were larger than those in control and increased. The yield of rough rice although statistically significant differences were not recognized, were numerically increased. 3. The rate of ripened grains, the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling in different treatments of leaf defoliation were remarkably decreased as the degree of leaf-defoliation became larger. 4. The rate of ripened grains, the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling in different combinations of number of remained leaves positioned differently, formed the order of $L_1(flag leaf)>L_2>L_3>L_4$ when only one leaf blade was remained, and were increased as the positions of leaves were higher when two leaf blades. were, remained. 5. In case of decrease in the number of leaf blades positioned differently, by the treatment of leaf. defoliation, rate of ripened grains, the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling were increased as the area of remained leaves became larger and the nitrogen content of a leaf blade was increased. 6. There was a tendency that the increase in the amount of fertilizer application made the rate of ripened grains and the weight of 1, 000 kernels of brown rice reduced in any number of remained leaf blades, but the application of top-dressing at heading. time resulted in the reverse tendency. The yield of rough rice showed a tendency to be increased as the amount of basal dressing and top-dressing increased and for the application of top-dressing at heading time, the yield of rough rice was less at the smaller number of those. 7. The productivity effect of the rate of ripened grains and the yield of brown rice covered by leaf blades was more than 50 per cent and that of the. weight of 1, 000 kernels of brown rice was not more than 1.0 percent. As the amount of nitrogen application increased the. effect of leaf blades on the rate of ripened. grains and the weight of 1, 000 kernels of brown rice was increased. The effect of leaf blades on the weight of brown rice was increased as the amount of basal dressing-application, but the effect was decreased as the amount of top-dressing at heading time increased, 8. The productivity effects of different positioned leaf blades on the rate of ripened grains, the yield of rough rice and the weight of 1, 000 kernels of brown rice were in order of $L_1(flag leaf)>L_2>L_3>L_4$ the productivity effects of $L_1$ and $L_2$ had a tendency to be increased as the amount of nitrogen applied was increased. Experiment II: A field experiment was done in order to disclose the effect of the time of nitrogen application on yield component and the effect of different positioned leaves formed by leaf defoliation at heading time on the rate of ripened grains and the yield of rice. The results obtained are as follows: 1. Average number of ears per hill was increased in the treatment of nitrogen application from basal dressing to 22 days before heading and in the treatment of application distributed weekly. Number of grains was increased in the treatment of nitrogen application from 36 days to 15 days before heading. The rate of ripened grains was, lower in the treatment of nitrogen application from top-dressing to 15 days before heading than in that of non-application, was higher in the treatment of nitrogen application within 8 days before heading, and was the lowest in that of application 29 days before heading. The yield of rough rice was the highest in the treatment of nitrogen application from 29 days to 22 days before heading. The weight of 1, 000 kernels of brown rice was a little high in the treatment of application from 29 days to 8 days before heading. 2. The rate of ripened grains the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling in different treatments of leaf defoliation were remarkably decreased as the degree of leaf defoliation got larger and there were highly significant differences among treatments. There was also a recognized interaction between the time of nitrogen application and leaf defoliation. 3. In relation to the rate of ripened grains, the weight of 1. 000 kernels of brown rice and the rate of hulling in different numbers of remained leaves positioned differently and their combinations, the yield components were in order of $L_1(flag leaf)>L_2>L_3>L_4$ when only one leaf was remained, which indicated that the components were increased as the leaf position got higher. When two laves were remained, the rate of ripened grains, the yield of rough rice and rate of hulling were high in case of the combinations of upper positioned leaves, and the increase in the weight of 1, 000 kernels of brown rice appeared to be affected most]y by flag leaf. When three leaf blades were remained similarly the components were increased with the combination of upper positioned leaf blades. 4. In case of decreased different positioned leaf blades by treatment of leaf defoliation, there was a significant positive regression between the leaf area, the dry matter weight of leaf blades and the nitrogen contents of leaf blades, and rate of ripened grains and the yield of rough rice, but there was no constant tendency between the former components and the weight of 1. 000 kernels of brown rice. 5. The closer the time of fertilizer application to heading time, the more the rate of ripened grains and the weight of 1, 000 kernels was decreased by defoliation, and the less were the remained leaf blades, the more remarkable was the tendency. The rate of ripened grains and the weight of 1. 000 kernels was increased by the top-dressing after heading time as the number of remained leaf blades. When the number of remained leaf blades was small the yield of rough rice was increased as the time of fertilizer application was closer to heading time. 6. Discussing the productivity effects of different organs in different times of nitrogen application, the productivity effect of a leaf blade on the rate of ripened grains was higher as the time of nitrogen application got later, and in the treatment of non-fertilization the productivity effect of a leaf blade and that of culm were the same. In the productivity effect on the yield of brown rice, the effect of culm covered more than 50 percent independently on the time of nitrogen application, and the tendency was larger in the treatment of non-fertilizer. The productivity effect of culm on the weight of 1. 000 kernels of brown rice was more than 90 percent, and the productivity effect of a leaf blade was increased as the time of application got later. 7. The productivity effect of a leaf blade in different positions on the rate of ripened grains, the yield of rough rice and the weight of 1, 000 kernels of brown rice had a tendency to be increased as the time of application got later and as the position of leaf blades got higher. In the treatment of weekly application through the entire growing period, the rate of ripened grains and the yield of rough rice were affected by flag leaf and the second leaf at the same level, the but the weight of 1, 000 kernels of brown rice was affected by flag leaf with more than 60 percent of the yield of total leaves.

  • PDF

A Study on Dynamic Characteristics Analysis of Hybrid Wind Power Blades according to Material Properties Method (물성치 적용 기법에 따른 하이브리드 풍력 블레이드 동적특성 해석에 관한 연구)

  • Kang, Byong-Yun;Han, Jeong-Young;Hong, Cheol-Hyun;Moon, Byong-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.5-11
    • /
    • 2012
  • In this paper, the heat transfer coefficient measurement techniques using TSP(temperature sensitive paint) were introduced and the results of a comparative study on the heat transfer coefficient measurement by steady state and transient TSP techniques were discussed. The distributions of heat transfer coefficient by a single $60^{\circ}$ inclined impingement jet on a flat surface were measured by both techniques. Tested Reynolds number based on the jet diameter (d) was 30,000 and the distance between jet exit and target plate (L) was fixed at 10d. Results showed that the measured Nusselt number by both techniques indicated significant difference except near the center of impingement jet. Also, the heat transfer coefficients measured by the transient TSP technique were affected by the reference temperature of the jet. Based on the measured data, characteristics of both TSP techniques were analyzed and suggestions for applying them were also given.

Heat Transfer Characteristics in a Leading Edge Cooling Channel of a Turbine Blade with Various Rib Arrangements (터빈 기익 선단부에 설치된 냉각유로에서의 요철 배열에 따른 열전달 특성)

  • Lee, Dong-Hyun;Kim, Kyung-Min;Rhee, Dong-Ho;Cho, Hyung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.459-466
    • /
    • 2005
  • The present study investigates the heat transfer characteristics of a triangular channel. Three different rib configurations are tested. The ribs are installed on two sides of the channel. The rib height (e) to channel hydraulic diameter is 0.079 and the rib-to-rib pitch (p) is 8 times of the rib height. The rotation number ranges from 0.0 to 0.1 while the Reynolds number is fixed at 10,000. The copper blocks with heaters are installed on the channel walls to measure the regionally averaged heat transfer coefficients. For the stationary $45^{\circ}$ and $135^{\circ}$ ribbed channels, a pair of counter rotating vortices is induced by the angled rib arrangements, and high heat transfer coefficients are obtained on the regions near the inner wall for the $45^{\circ}$ ribbed channel and near the leading edge for the $90^{\circ}$ ribbed channel. The heat transfer coefficients of angled ribbed channels are changed little with rotation, whereas those of the transverse ribbed channel are changed significantly with rotation.

  • PDF

A Study on the Blade Load Measurement of Partial-admission Turbine Cascade (충동형 터빈 캐스케이드의 깃 하중 측정에 관한 연구)

  • Lim, Dong-Hwa;Jang, Jin-Man;Lee, Eun-Seok;Kim, Jin-Han;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.143-148
    • /
    • 2007
  • An impulse turbine, which is a main component of a liquid rocket engine, needs to be a small size with light weight and generate large power. Since the impulse turbine is being operated under complicated supersonic conditions, flow analysis and performance prediction largely depend on CFD technique. In order to increase the reliability of the prediction code, however, it often requires an experimental data to compare. In this research a rotating turbine rotor with multiple blades is simulated with a two-dimensional stationary cascade to check the effect of major flow parameters. Mach number is measured at nozzle exit by using a pitot tube and the blade thrust was also measured with a load cell. The measured thrust coefficient and the power are compared well with the designed conditions, which proves the design procedures are properly taken.

Computation of Noise from a Rotating Cylinder (회전하는 실린더에 의한 공력소음의 계산)

  • Jang, S.W.;Lee, S.;Kim, J.H.;Han, J.O.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.413-418
    • /
    • 2000
  • The noise sources from a rotating cylinder were identified to describe the blunt trailing edge noise. Firstly, LES formulation was applied to a non-orthogonal grid system and was tested with three-dimensional cross-flow over a cylinder with a yaw angle. The computed far-field noise showed peaks at Strouhal numbers ranging from 0.135 to 0.165 for the yawed cylinder flow with end-plates placed at both extremes under the yaw angle of $30^{\circ}$ and Reynolds number of $1.15{\times}10^4$. It was observed that the slantwise shedding at angles other than the cylinder yaw angle is intrinsic to inclined cylinder, with the result of shedding angles between $15^{\circ}$ and $31^{\circ}$. To study the trailing-edge wake thickness and unsteady lift-coefficient distribution in the span-wise direction of a rotating fan blade, the flows around rotating cylinder with 1,000 rpm were simulated and the far-field noise was exactly computed using the Ffowcs-Williams and Hawkings equation with quadrupole source term. The incoming velocities and stagnant zones were continuously distributed along the cylinder, and their changes made the Strouhal sheddings to occur at different phases even at almost same Strouhal number.

  • PDF

Sidewalls Design for a Double-Passage Cascade Model (2피치 유로의 캐스케이드 모델을 위한 벽면설계에 관한 연구)

  • Cho, Chong-Hyun;Cho, Bong-Soo;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.797-806
    • /
    • 2008
  • In a double-passage cascade apparatus, only two blades are installed in order to increase the accuracy of experimental result by applying bigger blade than the size of multi-blades on the same apparatus. However, this causes difficulties to make correct periodic condition. In this study, sidewalls are designed to meet periodic condition without removing the operating fluid or adjusting tail boards. Surface Mach number on the blade surface is applied to a responsible variable, and 12 design variables which are related with sidewall profile control are selected. A gradient-based optimization is adopted for wall design and CFX-11 is used for the internal flow computation. The computed result shows that it could obtain the same flow structure by modifying only the sidewalls of the double-passage cascade apparatus.

Unsteady Transitional Boundary Layer due to Rotor Stator Interaction at Design and Off Design Operations (설계점 및 탈설계점에서의 rotor-stator 상호작용에 의한 비정상 천이 경계층의 수치해석적 연구)

  • Kang Dong Jin;Jun Hyun Joo
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.17-30
    • /
    • 1999
  • The unsteady transitional boundary layer due to rotor-stator interaction was studied at two operation points, the design and one off design points. The off design point leads to lower blade loading and lower Reynolds number. A Navier-Stokes code developed in the previous study was parallelized to expedite computations. A low Reynolds number turbulence model was used to close the momentum equations. All computations show good agreement with experimental data. The wake induced transitional strip on the suction side of the stator is clearly captured at design point operation. There is no noticeable change in shape and phase angle of the wake induced strip even in the laminar sublayer. The wake induced transitional strip at off design point shows more complex structure. The wake induced transitional strip is observed only in the turbulent layer, and becomes obscure in the laminar sublayer and buffer layer. This behavior is probably consequent upon that the transition is governed by both wake induced strip and natural transition mechanism by Tollmien-Schlichting wave.

  • PDF

Rib-Dimple Compound Cooling Techniques in a Gas Turbine Blade Cooling Channels with an Aspect ratio (4:1) (4:1 종횡비를 갖는 가스터빈 블레이드 냉각 유로에서의 립-딤플 복합 냉각 특성 연구)

  • Choi, Yong-Duck;Kim, Seok-Beom;Lee, Yong-Jin;Kim, Jin-Kon;Kwak, Jae-Su
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.304-310
    • /
    • 2010
  • Heat transfer coefficients in a dimpled channel, a ribbed channel, and a rip-dimple compound channel were measured by the transient liquid crystal technique. The channel aspect ratio, the rib height, the rip pitch, and the rib angle were 4:1, 6 mm, 60 mm and $60^{\circ}$, respectively. The dimple diameter and the center-to-center distance were 6mm and 7.2 mm, respectively, and the Reynolds number range was 30,000-50,000. Results showed that the heat transfer coefficients were increased by the angled rib. For the dimple-rib compound cooling cases, the heat transfer coefficients were further augmented and the thermal performance factor for the case was the highest.

  • PDF