• Title/Summary/Keyword: Number of Blade

Search Result 491, Processing Time 0.025 seconds

Effects of Free-Stream Turbulence Intensity and Blowing Ratio on Film Cooling of Turbine Blade Leading Edge (자유유동 난류강도와 분사비가 터빈 블레이드 선단 막냉각 특성에 미치는 영향)

  • Kim, S.M.;Kim, Youn-J.;Cho, H.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.746-751
    • /
    • 2001
  • We used a cylindrical model which simulates turbine blade leading edge to investigate the effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge. Tests are carried out in a low-speed wind tunnel on a cylindrical model with three rows of injection holes. Mainstream Reynolds number based on the cylinder diameter was $7.1\times10^4$. Two types of turbulence grid are used to increase a free-stream turbulence intensity. The effect of coolant blowing ratio was studied for various blowing ratios. For each blowing ratios, wall temperatures around the surface of the test model are measured by thermocouples installed inside the model. Results show that blowing ratios have small effect on spanwise-averaged film effectiveness at high free-stream turbulence intensity. However, an increase in free-stream turbulence intensity enhances significantly spanwise-averaged film effectiveness at low blowing ratio.

  • PDF

Performance Improvement of a Vacuum Cleaner by CFD Analysis around Motor (진공청소기 흡입효율 개선을 위한 모터 주위의 유동해석)

  • Park, J.W.;Ki, M.C.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.522-525
    • /
    • 2008
  • A vacuum cleaner is the widely used home equipment. However, it has a trouble with too much power consumption. Most losses occur at the centrifugal fan. To remedy this trouble the investigation of motor, which is the main component of vacuum cleaner, is required. The flow characteristics around the high-speed rotating centrifugal fan which is influenced by the very low inlet pressure is quite different from a commonly used fan. Hence it is quite difficult to analyze the flow by the experimental means or by the numerical simulation. In this research, it is aimed to improve the air-suction performance of a vacuum cleaner through the flow analysis around a motor. The efficiency of the centrifugal fan is affected by blade shape, blade number, blade pitch, etc. The influence of the shape of impeller on the flow is investigated in this study. The flow around the centrifugal fan is simulated by applying the moving mesh. To verify the validity of the computation results, the air flow rate and the pressure field to the cleaner is compared with the experimental data. All simulations are performed by using commercial code SC/Tetra. The calculated results show good agreement with the experimental ones and it is believed to be promising to use computational simulation in the improvement of the vacuum cleaner performance.

  • PDF

Heat Transfer Characteristics on the Tip Surface of a High-Turning Turbine Rotor Blade (고선회 터빈 동익 팁 표면에서의 열전달 특성)

  • Lee, Sang-Woo;Moon, Hyun-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.207-215
    • /
    • 2008
  • The heat/mass transfer characteristics on the plane tip surface of a high-turning first-stage turbine rotor blade has been investigated by employing the naphthalene sublimation technique. At the Reynolds number of $2.09{\times}10^5$, heat/mass transfer coefficients are measured for the tip gap height-to-chord ratio, h/c, of 2.0% at turbulence levels of Tu = 0.3 and 14.7%. A tip-surface flow visualization is also performed for h/c = 2.0% at Tu = 0.3%. The results show that there exists a strong flow separation/re-attachment process, which results in severe local thermal load along the pressure-side corner, and a pair of vortices named "tip gap vortices" in this study is identified along the pressure and suction-side tip corners near the leading edge. The loci and subsequent development of the pressure- and suction-side tip gap vortices are discussed in detail. The combustor-level high inlet turbulence, which increases the tip-surface heat/mass transfer, provides more uniform thermal-load distribution.

Pruning and Matching Scheme for Rotation Invariant Leaf Image Retrieval

  • Tak, Yoon-Sik;Hwang, Een-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.6
    • /
    • pp.280-298
    • /
    • 2008
  • For efficient content-based image retrieval, diverse visual features such as color, texture, and shape have been widely used. In the case of leaf images, further improvement can be achieved based on the following observations. Most plants have unique shape of leaves that consist of one or more blades. Hence, blade-based matching can be more efficient than whole shape-based matching since the number and shape of blades are very effective to filtering out dissimilar leaves. Guaranteeing rotational invariance is critical for matching accuracy. In this paper, we propose a new shape representation, indexing and matching scheme for leaf image retrieval. For leaf shape representation, we generated a distance curve that is a sequence of distances between the leaf’s center and all the contour points. For matching, we developed a blade-based matching algorithm called rotation invariant - partial dynamic time warping (RI-PDTW). To speed up the matching, we suggest two additional techniques: i) priority queue-based pruning of unnecessary blade sequences for rotational invariance, and ii) lower bound-based pruning of unnecessary partial dynamic time warping (PDTW) calculations. We implemented a prototype system on the GEMINI framework [1][2]. Using experimental results, we showed that our scheme achieves excellent performance compared to competitive schemes.

Analysis on Fertilizer Application Uniformity of Centrifugal Fertilizer Distributor

  • Kim, JiMan;Woo, Dukgam;Kim, Taehan
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.420-425
    • /
    • 2018
  • Purpose: Chemical fertilizers contribute to agricultural productivity. Annually, 450,000 tons of chemical fertilizers are used in Korea, which is 268 kg per hectare (MAFRA, 2016). However, excessive use causes problems such as environmental pollution and soil acidification. This study proposes use conditions for a fertilizer distributor that can reduce excessive fertilization by analyzing distribution patterns. Methods: This study analyzed fertilizer application uniformity according to the number of blades on a centrifugal fertilizer distributor (three or four blades), orifice gate open ratio (50 or 100%), and blade rotation speed (400, 500, or 600 rpm). Results: When using four blades, the coefficient of variation (CV) was lower than when using three by 11-13% points, and the CV using the 50% open ratio was 10-30% points lower than using the 100% open ratio. The CV at 500 rpm blade rotating speed was 9-12% points lower than that for 400 and 600 rpm. Conclusions: The CV with four blades, 50% orifice gate open ratio, and 500 rpm of blade rotating speed was 18.4%, which provided the most uniform fertilization.

Heat/Mass Transfer Characteristics on the Squealer Tip Surface of a Turbine Rotor Blade (터빈 동익 스퀼러팁 표면에서의 열(물질)전달 특성)

  • Moon, Hyun-Suk;Lee, Sang-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • The flow and heat/mass transfer characteristics on the squealer tip surface of a high-turning turbine rotor blade have been investigated at a Reynolds number of $2.09{\times}10^5$, by employing the oil-film flow visualization and naphthalene sublimation technique. The squealer rim height-to-chord ratio and tip gap height-to-chord ratio are fixed as typical values of $h_{st}/c$ = 5.5% and h/c = 2.0%, respectively, for turbulence intensities of Tu = 0.3% and 15%. The results show that the near-wall flow phenomena within the cavity of the squealer tip are totally different from those over the plane tip. There are complicated backward flows from the suction side to the pressure side near the cavity floor, in contrast to the plane tip gap flows moving toward the suction side after flow separation/reattachment. The squealer tip provides a significant reduction in tip surface thermal load with less severe gradient compared to the plane tip. In this study, the tip surface is divided into six different regions, and transport phenomena at each region are discussed in detail. The mean thermal load averaged over the squealer cavity floor is augmented by 7.5 percents under the high inlet turbulence level.

Optimized Structure Design of Composite Cyclocopter Rotor System using RSM (반응면 기법을 이용한 복합재료 사이클로콥터 로터의 최적 구조 설계)

  • Hwang In Seong;Hwang Chang Sup;Kim Min Ki;Kim Seung Jo
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.52-58
    • /
    • 2005
  • A cyclocopter propelled by the cycloidal blade system, which can be described as a horizontal rotary wing, is a new concept of VTOL vehicle. In this paper, optimized structure design is carried out for the aerodynamically optimized cyclocopter rotor system. Database is obtained fer design variables such as stacking sequence (ply angles), number of plies and spar locations through MSC/NASTRAN and optimum values are determined by RSM and some other optimizing processes. For the rotor system including optimized blade and composite hub m, the maximum stress by static analysis is within the failure criteria. And the rotor system is designed for the purpose of avoiding possible dynamic instabilities by inconsistency between frequencies of rotor rotation and some low natural frequencies of rotor.

Characterization of Albino Tobaccos (Nicotiana tabacum L.) Derived from Leaf Blade-Segments Cultured in vitro

  • Bae, Chang-Hyu;Tomoko Abe;Lee, Hyo-Yeon;Kim, Dong-Cheol;Min, Kyung-Soo;Park, Kwan-Sam;Tomoki Matsuyama;Takeshi Nakano;Shigeo Yoshida
    • Journal of Plant Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.101-107
    • /
    • 1999
  • The leaf blade-segments of albino tobacco (Nicotiana tabacum L.) were cultured on MS media containing different concentrations of BAP (0, 0.4, 2.2, 4.4, 22.2 ${\mu}{\textrm}{m}$) with or without NAA (0, 0.5, 2.7 ${\mu}{\textrm}{m}$). Multiple shoots were induced on the media containing 0.4 to 2.2 ${\mu}{\textrm}{m}$ BAP. The best condition for multiple shoot induction with root formation was MS media containing 4.4 ${\mu}{\textrm}{m}$ BAP and 0.5 ${\mu}{\textrm}{m}$ NAA. The regenerated albino plants showed a significant reduction in accumulation of chlorophylls and carotenoids. The drastic reduction of the pigments content was associated with the distinct alterations in gene expression in the albino plants. firstly, the expression of plastid genes, such as rbcL, psbA, 165 rDNA and 235 rDNA, was reduced at the level of transcripts in the regenerated albino plants. Secondly, the alteration of structure of the plastid genes was not detected in the albino plants. However, the copy number of the plastid genes whose transcription level was reduced greatly was increased approximately two-fold, although the transcriptions of nuclear gene (255 rDNA) showed the wild-type level.

  • PDF

Application of Gurney Flaps on a Centrifugal Fan Impeller

  • Dundi, Thomas Manoj Kumar;Sitaram, Nekkanti;Suresh, Munivenkatareddy
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • The objective of the present investigation is to explore the possibility of improving the performance of a centrifugal fan at low Reynolds numbers using a simple passive means, namely Gurney flap (GF). GFs of 1/$8^{th}$ inch brass angle (3.175 mm) corresponding to 15.9% of blade exit height or 5.1% of blade spacing at the impeller tip are attached to the impeller blade tip on the pressure surface. Performance tests are carried out on the centrifugal fan with vaneless diffuser at five Reynolds numbers (viz., 0.30, 0.41, 0.55, 0.69, $0.82{\times}10^5$, i.e., at five speeds respectively at 1,100, 1,500, 2,000, 2,500 and 3,000 rpm) without and with GF. Static pressures on the vaneless diffuser hub and shroud are also measured for each speed at four flow coefficients [${\phi}$=0.23 (below design flow coefficient), ${\phi}$=0.34 (design flow coefficient), ${\phi}$=0.45 (above design flow coefficient) and ${\phi}$=0.60 (above design flow coefficient)] with and without GF. From the performance curves it is found that the performance of the fan improves considerably with GFs at lower Reynolds numbers and improves marginally at higher Reynolds number. Similar improvements are observed for the static pressures on the diffuser hub and shroud. The effect of Reynolds number on the performance and static pressures is considerable. However the effect is reduced with GFs.

An Experimental Study on Blade Deformation of Coaxial Rotor System Using SPR(Stereo Pattern Recognition) Technique (SPR(Stereo Pattern Recognition) 기법을 이용한 동축 로터 블레이드의 변형에 대한 실험적 연구)

  • Yoo, Chanho;Yoon, Byung-Il;Chae, Sanghyun;Kim, Do-Hyung;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.597-609
    • /
    • 2020
  • These days, the coaxial rotor system is used for various purposes like UAVs, Mars exploration helicopters, and the next-generation high-speed rotorcraft. A number of research projects on aerodynamic performance of rotor systems, including the coaxial configuration have been made previously. On the contrary, research on rotor blade deformation has been mainly carried out regarding the single rotor system, where such effort has not been enough on the coaxial system. Nonetheless, in case of the coaxial system, blade deformation analysis is much more important because of the complex air flow around the rotors, and that the distance between the two rotors is a key factor affects aerodynamic performance of the entire system. For these reasons, an experimental study on rotor blade deformation of the coaxial system was conducted using the Stereo Pattern Recognition(SPR) technique, one of the state-of-the-art of photogrammetry method. In this research, a small-scale coaxial rotor test stand designed by Korea Aerospace Research Institute(KARI) was used. With the same test stand, performance of the coaxial configuration had been studied before the experimental study on blade deformation, in order to find the relation between performance and blade deformation of the rotor system. Results of the performance test and the deformation study are presented in this article.