• Title/Summary/Keyword: Nucleotide Polymorphism

Search Result 959, Processing Time 0.04 seconds

An Association of C/T Polymorphism in the TFF1 Gene and the Susceptibility to Gastric Cancer (TFF1 유전자의 C/T 다형성과 위암 민감성과의 연관성)

  • Maeng, Eun Jae;Song, Jae Hwi;Sung, Soo Yoon;Cao, Zhang;Park, Won Sang
    • Journal of Gastric Cancer
    • /
    • v.8 no.3
    • /
    • pp.113-119
    • /
    • 2008
  • Purpose: This study investigated whether a single nucleotide polymorphism (SNP) located at position -2 in the Kozak sequence of the TFF1 gene is associated with H. pylori infection and the development of gastric cancer in Koreans. Materials and Methods: We enrolled 167 patients with gastric cancer from January 2000 to December 2003 and also 299 healthy controls during the same period. The genotype of the TFF1 SNP was analyzed by polymerase chain reaction-restriction fragment length polymorphism and single strand conformation polymorphism. We also examined the H. pylori infection by Giemsa staining. Results: No significant difference in the allele or the TFF1 SNP genotype frequency was observed between the patients with gastric cancer and the control subjects (P=0.595 and P=0.715, respectively). When stratified by the histological subtype of gastric cancer and the age of the patients, the risk was not statistically significant between the two study groups (P=0.088 and P=0.551, respectively). H. pylori infection was detected in 39 cases and it was not associated with the TFF1 genotype. Conclusion: These findings suggest that this TFF1 gene polymorphism is not associated with H. pylori infection and gastric cancer in Koreans and so it doesn't contribute to the susceptibility to gastric cancer in Koreans.

  • PDF

A Modified Mutation Detection Method for Large-scale Cloning of the Possible Single Nucleotide Polymorphism Sequences

  • Jiang, Ming-Chung;Jiang, Pao-Chu;Liao, Ching-Fong;Lee, Ching-Chiu
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.191-197
    • /
    • 2005
  • Although the human genome has been nearly completely sequenced, the functions and the roles of the vast majority of the genes, and the influences of single nucleotide polymorphisms (SNPs) in these genes are not entirely known. A modified mutation detection method was developed for large-scale cloning of the possible SNPs between tumor and normal cells for facilitating the identification of genetic factors that associated with cancer formation and progression. The method involves hybridization of restriction enzyme-cut chromosomal DNA, cleavage and modification of the sites of differences by enzymes, and differential cloning of sequence variations with a designed vector. Experimental validations of the presence and location of sequence variations in the isolated clones by PCR and DNA sequencing support the capability of this method in identifying sequence differences between tumor cells and normal cells.

Single Nucleotide Polymorphisms (SNPs) for Advanced Genomic Research in Sericulture

  • Vijayan, Kunjupillai
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.19 no.1
    • /
    • pp.143-154
    • /
    • 2009
  • Single nucleotide polymorphisms (SNPs) are the most frequent form of variation in the genome of any organism. Owing to their greater abundance, they are considered useful for identifying cultivars, construction of higher density linkage maps, and detection of genes (QTLs) associated with complex agronomic traits and diseases. Although, SNPs have been used recently for constructing a high density genetic map in silkworm and a set of 118 SNPs have been identified in tasar silkworms, not much progress has been made in sericulture to utilize the vast potential of SNPs. Thus, this review mainly focuses on some of the important methods of SNP discovery, validation and genotyping. Emphasis has also been given to the possible uses of SNP genotyping in the improvement of silkworms and their host plants.

Diagnostic approach for genetic causes of intellectual disability

  • Yim, Shin-Young
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • Intellectual disability (ID) is the most common disability among people under the age of 20 years. In the absence of obvious non-genetic causes of ID, the majority of cases of severe ID are thought to have a genetic cause. The advent of technologies such as array comparative genomic hybridization, single nucleotide polymorphism genotyping arrays, and massively parallel sequencing has shown that de novo copy number variations and single nucleotide variations affecting coding regions are major causes of severe ID. This article reviews the genetic causes of ID along with diagnostic approaches for this disability.

Cloning and Characterization of Genes Controlling Flower Color in Pharbitis nil Using AFLP (Amplified Fragment Length Polymorphism) and DDRT (Differential Display Reverse Transcription)

  • Kim, Eun-Mi;Jueson Maeng;Lim, Yong-Pyo;Yoonkang Hur
    • Journal of Photoscience
    • /
    • v.7 no.2
    • /
    • pp.73-78
    • /
    • 2000
  • To analyze molecular traits determining pigmentation between Pharbitis nill violet and white, Amplified Fragment Length Polymorphism(AFLP) and Differential Display Reverse Transcription(DDRT) experiments were carried out with either genomic DNAs or total RNAs isolated from both plants. Results of AFLP experiment in combination of 8 EcoRⅠ primers with 6 MseⅠ primers showed 41 violet-and 60 white-specific DNA bands. In the subsequent experiment, 22 violet-and 22 white-specific DNA fragments were amplified by PCR with DNAs eluted. The sizes of the fragments range from 200 to 600bp. DDRT using total RNA produced 19 violet-and 17 white-specific cDNA fragments, ranging from 200 to 600bp. The fragments obtained by both AFLP and DDRT had been cloned into pGEM T-easy vector, amplified and subjected to the nucleotide sequence analyses. As a result of Blast sequence analysis, most of them sequenced up to date showed no similarity to any Known gene, while few has similarity to known animal or plant genes. An AFLP clone V6, for example, has a strong sequence similarity to the human transcription factor LZIP-alpha mRNA and a DDRT clone W19 to Solanum tuberosum 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA.

  • PDF