• Title/Summary/Keyword: Nucleophilicity

Search Result 68, Processing Time 0.027 seconds

The Study of Rates of Substitution Reaction [Pd(ONN)Cl] + Y$^-\;{\rightleftharpoons}$ [Pd(ONN)Y] + Cl$^-$ (Y = SCN$^-$, CN$^-$, N$_3^-$, Imidazole, Pyridine) ([Pd(ONN)Cl] 착물의 SCN$^-$, CN$^-$, N$_3^-$, Imidazole, Pyridine에 대한 치환반응 속도연구 (제 1 보))

  • Oh Sang-Oh;Yeo, Hwan Jin;Cho Iee Yeung
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.362-367
    • /
    • 1991
  • Rates of nucleophilic substitution reaction ([Pd (ONN) Cl] + Y$^-\;{\rightleftharpoons}$ [Pd (ONN)Y] + Cl$^-$ ; Y = SCN$^-$, CN$^-$, N$_3^-$, imidazole, pyridine) have been measured in methanol by spectrophotometric method at various temperatures. A set of nucleophilic reactivity constants, n$_{Pd}^{\circ}$ has been calculated. These values show an order of nucleophilicity CN$^-$ > SCN$^-$ > N$_3^-$ > Imidazole > Pyridine. The enthalpy of activation are small positive values and the entropy of activation are large negative values. From these results, it can be inferred that the nucleophilic substitution reaction proceeds through an associative (A) mechanism.

  • PDF

Applications of Third Order Models in Solvolytic Reaction of Aliphatic Substituted Acyl Derivatives in 2,2,2-Trifluoroethanol-Ethanol Systems

  • Ryu, Zoon-Ha;Lim, Gui-Taek;Bentley, T. William
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1293-1302
    • /
    • 2003
  • Rate constants at various temperatures and activation parameters are reported for solvolyses of acyl chlorides (RCOCl), with R = Me, Et, i-Pr, t-Bu, cyclopentylmethyl, benzyl, thiophenylmethyl, 2-phenylethyl, diphenylmethyl, and phenylthiomethyl in 100% ethanol, 100% 2,2,2-trifluoroethanol (TFE), 80% v/v ethanol/ water and 97% w/w TFE/water. Additional rate constants for solvolyses with R = Me, t-Bu, and $PhCH_2$ are reported for TFE/water and TFE/ethanol mixtures, and for solvolyses with R = t-Bu, and PhCH2 are reported for 1,1,1,3,3,3-hexafluoropropan-2-ol/water mixtures, as well as selected kinetic solvent isotope effects (MeOH/MeOD and TFE). Taft plots show that electron withdrawing groups (EWG) decrease reactivity significantly in TFE, but increase reactivity slightly in ethanol. Correlation of solvent effects using the extended Grunwald-Winstein (GW) equation shows an increasing sensitivity to solvent nucleophilicity for EWG. The effect of solvent stoichiometry in assumed third order reactions is evaluated for TFE/ethanol mixtures, which do not fit well in GW plots for R = Me, and t-Bu, and it is proposed that one molecule of TFE may have a specific role as electrophile; in contrast, reactions of substrates containing an EWG can be explained by third order reactions in which one molecule of solvent (ethanol or TFE) acts as a nucleophile, and a molecule of ethanol acts as a general base catalyst. Isokinetic relationships are also investigated.

Kinetic Studies on Halogen Exchange of Substituted Benzenesulfonylbromides

  • Kim, Jaerok
    • Nuclear Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.321-333
    • /
    • 1973
  • The rates and activation parameters for the halide exchange reactions of substituted benzenesulfonylbromides (R-C$_{6}$H$_4$SO$_2$Br, R=p-MeO, p-$CH_3$, p-H, p-NO$_2$) in dry acetone at two temperatures were determined. It was found that the nucleophilicity order of Cl->I-$\geq$Br- for strong electron withdrawing-, and mild electron donating group, and of I-$\geq$Cl->Br- for strong electron donating group, Hammett plots showed slightly convoked characteristics which is similar to the plots of substituted benzenesulfonylchlorides, but contrary to the concaved nature for the halide exchange reactions of substituted benzyl chlorides. The rate of halogen exchange between benzenesulfonylbromide and lithium bromide decreased in the order of solvent : ($CH_3$)$_2$CO>$CH_3$CN》MeOH. The rates and activation parameters were also compared with those already known in the substituted benzenesulfonylchlorides. Theses were explained in terms of the structural properties of the transition state, and discussed the reaction mechanisms.s.

  • PDF

Studies of Solvolyses of Di-n-butyl Phosphorochloridate by Extended Grunwald-Winstein Equation (확장된 Grunwald-Winstein 식에 의한 Di-n-butyl Phosphorochloridate의 가용매 분해반응 연구)

  • Kang, Min Sung;Kim, Cheul Ju;Kang, Suk Jin;Koh, Han Joong
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.373-378
    • /
    • 2015
  • The solvolysis rate constants of di-n-butyl phosphorochloridate ((CH3CH2CH2CH2O)2POCI, 1) in 28 different solvents are well correlated with the extended Grunwald-Winstein equation, using the NT solvent nucleophilicity scale and YCl solvent ionizing scale, with the sensitivities values of 1.40 and 0.42 for l and m, respectively. These l and m values can be considered to support an SN2 reaction pathway. This interpretation is further supported by the activation parameters, i.e., relatively small positive ΔH (8.0 to 15.9 kcal·mol−1 ) values and large negative ΔS (−25.8 to −53.1 cal·mol−1 ·K−1 ) values, the Kivinen’s n values (0.9~1.7), and the solvent kinetic isotope effect (1.62).

Nucleophilic Fluorination Reactions in Novel Reaction Media for $^{18}F$-Fluorine Labeling Method ($^{18}F$-플루오린 표지를 위한 신개념 반응용매에서 친핵성 불소화 반응)

  • Kim, Dong-Wook;Jeong, Hwan-Jeong;Lim, Seok-Tae;Sohn, Myung-Hee
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.2
    • /
    • pp.91-99
    • /
    • 2009
  • Noninvasive imaging of molecular and biological processes in living subjects with positron emission tomography(PET) provides exciting opportunities to monitor metabolism and detect diseases in humans. Measuring these processes with PET requires the preparation of specific molecular imaging probes labeled with $^{18}F$-fluorine. In this review we describe recent methods and novel trends for the introduction of $^{18}F$-fluorine into molecules which in turn are intended to serve as imaging agents for PET study. Nucleophilic $^{18}F$-fluorination of some halo- and mesyloxyalkanes to the corresponding $^{18}F$-fluoroalkanes with $^{18}F$-fluoride obtained from an $^{18}O(p,n)^{18}F$ reaction, using novel reaction media system such as an ionic liquidor tert-alcohol, has been studied as a new method for $^{18}F$-fluorine labeling. Ionic liquid method is rapid and particularly convenient because $^{18}F$-fluoride in $H_2O$ can be added directly to the reaction media, obviating the careful drying that is typically required for currently used radiofluorination methods. The nonpolar protic tert-alcohol enhances the nucleophilicity of the fluoride ion dramatically in the absence of any kind of catalyst, greatly increasing the rate of the nucleophilic fluorination and reducing formation of byproducts compared with conventional methods using dipolar aprotic solvents. The great efficacy of this method is a particular advantage in labeling radiopharmaceuticals with $^{18}F$-fluorine for PETimaging, and it is illustrated by the synthesis of $^{18}F$-fluoride radiolabeled molecular imaging probes, such as $^{18}F$-FDG, $^{18}F$-FLT, $^{18}F$-FP-CIT, and $^{18}F$-FMISO, in high yield and purity and in shorter times compared to conventional syntheses.

A Study Based on Molecular Orbital Theory of Polymerization of Oxetane High Explosives (옥세탄 고폭 화약류의 중합반응에 관한 분자 궤도론적 연구)

  • Kim, Joon-Tae
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.159-164
    • /
    • 2009
  • Monomers of oxetane high explosives were theoretically examined in terms of reactivity, reaction mechanism and process of polymerization substituted by azido $(-CH_2N_3)$, nitrato $(-CH_2ONO_2)$ and hydrazino $(-CH_2N_2H_3)$ which belong to the 5th class hazardous materials and have explosiveness under acid catalyst using MINDO/3, MNDO, and AMI methods for formal charge, heat of formation, and energy level. Nucleophilicity and base of oxetane high explosives could be explained by negative charge size of oxetane oxygen atom and reactivity of oxetane in the growth stage of polymerization under acid catalyzer could be expected to be governed by positive charge size of axial carbon atom and low LUMO energy of electrophile. It could be estimated that carbenium ion was more beneficial in the conversion process of oxetane high explosives than that of stabilization energy (13.90~31.02 kcal/mole) of oxonium ion. In addition, concentration of oxonium ion and carbenium ion in equilibrium state influenced mechanism and it was also estimated that $S_N1$ mechanism reacts faster than that of $S_N2$ in prepolymer growth stage considering quick equilibrium based on form and calculation of polymerization under acid catalyzer.

Electrochemical Synthesis of Conducting Polypyrrole in Nucleophilic Solvent (친핵성 용매하에서 전도성 Polypyrrole의 전기화학적 합성)

  • Lee, Hong-Ki;Park, Soo-Gil;Shim, Mi-Ja;Kim, Sang-Wook;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.616-623
    • /
    • 1994
  • Conductive Polypyrrole films have been synthesized by electrochemical method in nucleophilic solvent such as N, N-dimetylformamide(DMF), dimethylsulfoxide(DMSO). The effect of protic acid as supporting electrolyte to decrease the nucleophilicity of the solvent was studied. Cyclic voltammetry, I-t transients were carried out to investigate the electrodeposition of conductive polypyrrole film on platinum electrode. Three peaks of 0.65V, 0.85V, and 1.2V vs. $Ag/AgNO_3$ indicated oxidation of monomer, oxidation of pyrrole to the platinum electrode and decomposition of polypyrrole film, respectively. With the I-t transients, nucleation process was confirmed and from obtained linear fits of I vs.t2resembles the metal film formation, and 2.15-2.26 of n-value could be calculated. As concentration of pyrrole or prolic acid was increased, the conductivity of polypyrrole film increased linearly. Tensile strength and elongation were investigated for comparing the mechanical properties and also SEM was performed for morphology investigation.

  • PDF

Studies of Solvolyses of Biphenyl-4-carbonyl Chloride by Extended Grunwald-Winstein Equation (확장된 Gruwald-Winstein 식에 의한 Biphenyl-4-carbonyl chloride의 가용매분해 반응대한 연구)

  • Choi, Hojune;Koh, HanJoong;Yang, Kiyull;Koo, InSun
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.16-20
    • /
    • 2016
  • The solvolysis rate constants of biphenyl-4-carbonyl chloride (C6H5C6H5COCl, 1) in 19 different solvents are well correlated with the extended Grunwald-Winstein equation, using the NT solvent nucleophilicity scale, YCl solvent ionizing scale, and I aromatic ring parameter with sensitivity values of 0.31±0.10, 0.46±0.05, and 0.96±0.20 for l, m, and h, respectively. These l, m, and h values can be considered to support a dissciative SN2 reaction pathway. This interpretation is further supported by the activation parameters, i.e., relatively small positive ΔH (15.3~16.1 kcal/mol) values and large negative ΔS (−17.2~−20.0 cal/mol·K) values.